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Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours? 3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula,
is there a satisfying assignment?
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Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?
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Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours?

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
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Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours?

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Colouring: frequency allocation for mobile base stations
Clique: bioinformatics, computational chemistry
Sat: easily models these and many other problems
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. . . with Huge Practical Implications

Some more examples of problems that can be encoded as
propositional logic formulas:

computer hardware verification
computer software testing
artificial intelligence
operations research
cryptography
bioinformatics
et cetera. . .

Leads to humongous formulas (100,000s or even 1,000,000s of
variables)

Can we use computers to solve these problems efficiently?
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Solving NP in Theory and Practice

Sat mentioned in Gödel’s letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers
[BS97, MS99, MMZ+01] that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)
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Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of
reasoning it uses

View this method of reasoning as formal proof system, with each
single step efficiently verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this talk: Question 1 for different proof systems/algorithms
Study infeasible problems — proof of feasibility easy

Question 2: Separate talk — lots of recent exciting progress; mostly
negative (worst-case) results, e.g., [AM20, GKMP20, dRGN+21]
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Applications of Proof Complexity

Three applied reasons for proof complexity:

1 Understand real-world applied algorithmic paradigms [this talk]

2 Get ideas for algorithmic improvements (e.g.,
[EN18, EN20, DGD+21, DGN21, KBBN22])

3 Enhance algorithms to write machine-verifiable certificates of
correctness (e.g., [EGMN20, GMN20, GMM+20, GN21, GMN22,
GMNO22, BGMN23, BBN+23, GMM+24]

Or just view this as a convenient excuse to study nice computational
complexity problems for their own sake. . .,
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Outline

1 Conflict-Driven Clause Learning and Resolution
The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

2 Algebraic and Semi-algebraic Approaches
Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

3 Some Proof Systems We Won’t Have Time for
Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Formal Description of Sat Problem

Variable x: takes value true (= 1) or false (= 0)

Literal ℓ: variable x or its negation x (write x instead of ¬x)
Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:
conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

Here is our example formula again:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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xuw = 0
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z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y + (1− z) ≥ 1

x+ (1− y) + u ≥ 1

(1− y) + (1− u) ≥ 1

u+ v ≥ 1

(1− x) + (1− v) ≥ 1

(1− u) + w ≥ 1

(1− x) + (1− u) + (1− w) ≥ 1

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y − z ≥ 0

x− y + u ≥ 0

−y − u ≥ −1
u+ v ≥ 1

−x− v ≥ −1
−u+ w ≥ 0

−x− u− w ≥ −2

For true = 1 and false = 0, is there a {0, 1}-valued solution?
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

State-of-the-Art SAT Solving in One Slide

High-level description of modern conflict-driven clause learning
(CDCL) SAT solving (as pioneered in [BS97, MS99, MMZ+01]):

Try to build satisfying assignment for formula (branching or
decision heuristic crucial)

When partial assignment violates formula, compute explanation
for conflict and add to formula as new clause (clause learning)

Every once in a while, restart from beginning (but save
computed info)
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict
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Time to analyse this conflict and learn from it!
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Could backtrack by removing last decision
level & flipping last decision

But want to learn from conflict and cut away
as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &
removing z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable
after last decision — learn and backjump
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Complete Toy Example for CDCL Execution
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Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .
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Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]

Start with clauses of CNF formula (axioms)

Derive new clauses by resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2
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Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Resolution Proofs by Contradction

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

Observation

If F is a satisfiable CNF formula and D is derived from clauses
D1, D2 ∈ F by the resolution rule, then F ∧D is satisfiable.

So can prove F unsatisfiable by deriving the unsatisfiable empty
clause (denoted ⊥) from F by resolution

Such proof by contradiction also called resolution refutation
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CDCL and Resolution Proofs

Obtain resolution proof. . . from our example CDCL execution by
stringing together conflict analyses:
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in
this presentation to be able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics
and optimizations that we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning
about propositional logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but

this gets complicated and we don’t have time to go into details. . .
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof
complexity lower bounds for (seemingly) “obvious” formulas
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Conflict-Driven Clause Learning and Resolution
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Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)
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Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander
graphs — “resolution cannot count mod 2”
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∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander
graphs — “resolution cannot count mod 2”
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But not Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Hilbert’s Nullstellensatz

Consider any system of polynomial equations

p1(x1, . . . , xn) = 0 x21 − x1 = 0

p2(x1, . . . , xn) = 0 x22 − x2 = 0

...
...

pm(x1, . . . , xn) = 0 x2n − xn = 0

in polynomial ring over field F

Hilbert’s Nullstellensatz

System infeasible ⇔ exist qi, rj ∈ F[x1, . . . , xn] such that

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Proof System [BIK+94]

Nullstellensatz refutation of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

is (syntactic) equality

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Complexity measures of refutations:

Size: number of monomials (when all polynomials expanded out)

Degree: highest total degree of any polynomial
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Proof Search

Solve linear system of equations with coefficients of
polynomials qi, rj as unknowns

Used successfully to solve, e.g., graph colouring problems
[DLMM08, DLMO09, DLMM11]

Running time grows exponentially with degree, though
high-degree refutations can be very small [BCIP02, dRMNR21]
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1−x1)(1−x2)(1−x3) = 1−x1−x2−x3+x1x2+x1x3+x2x3−x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size
exponentially [dRLNS21] (also for other algebraic proof systems)
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Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1−x1)(1−x2)(1−x3) = 1−x1−x2−x3+x1x2+x1x3+x2x3−x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size
exponentially [dRLNS21] (also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 27/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

xj + x′j − 1 = 0 j ∈ [n]

⇕
1 lies in polynomial ideal I generated by these polynomials

Ideal I:
1 p, q ∈ I ⇒ p+ q ∈ I
2 p ∈ I ⇒ r · q ∈ I for any r

Compute polynomials in this ideal I step by step

Use “multivariate division” to check whether 1 lies in ideal or not
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:

1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)

If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of
polynomials G until no further reductions possible

G is a Gröbner basis if final result uniquely determined
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Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:

1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)

If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of
polynomials G until no further reductions possible
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Gröbner Bases: Buchberger’s Algorithm

Buchberger’s algorithm for computing Gröbner bases (very rough)

1 Let G := all axioms

2 Pick unprocessed pair p, q ∈ G or terminate if none exists

3 Compute p′ = tp · p and q′ = tq · q to make leading terms cancel

4 Set S := p′ − q′; reduce S mod G with multivariate division;
add result to G if non-zero

5 Go to 2

Facts:

Buchberger’s algorithm computes Gröbner basis

At termination, 1 ∈ G ⇔ polynomial equations infeasible
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Polynomial Calculus [CEI96, ABRW02]

Compute polynomials in ideal I generated by pi, x
2
j − xj , and

xj + x′j − 1 step by step:

pi ∈ I, x2
j − xj ∈ I, and xj + x′

j − 1 ∈ I
(axioms)
If p, q ∈ I, then αp+ βq ∈ I for any α, β ∈ F
(linear combination)
If p ∈ I, then m · p ∈ I for any monomial m =

∏
j xj

(multiplication)

A refutation is a derivation ending with the polynomial 1

Complexity measures:
Size: total number of monomials in all polynomials in derivation
expanded out
Degree: highest total degree of any polynomial

Polynomial calculus (much) stronger than Nullstellensatz w.r.t.
both size and degree
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Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently
step by step

Example: Resolution step

x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y
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Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field
characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]
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Colouring and Clique for Polynomial Calculus

Colouring

Exponential worst-case lower bounds in [LN17]

Exponential average-case lower bounds in [CdRN+23]

Clique

Essentially nothing known!
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What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but
promise of performance improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that
too little work has been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit
verification quite successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]
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Gröbner bases: Some Problems and Questions

1 Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info
Possible to use conflict-driven paradigm?!

2 Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

3 Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 36/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
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Gröbner bases: Some Problems and Questions

1 Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info
Possible to use conflict-driven paradigm?!

2 Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

3 Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 36/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
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Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables
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Cutting Planes Proof System [CCT87]

Cutting planes introduced in [CCT87] to model integer linear
programming algorithm in [Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities

Cutting planes derivation rules

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

c ∈ N+

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

Division

∑
aixi ≥ A∑

⌈ai/c⌉xi ≥ ⌈A/c⌉
c ∈ N+
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Cutting Planes Derivations and Refutations

A cutting planes derivation is a sequence of 0-1 integer linear
inequalities derived using

Axioms (clauses and variable bounds)
Multiplication

∑
aixi ≥ A⇒

∑
caixi ≥ cA

Addition
∑

aixi ≥ A,
∑

bixi ≥ B ⇒
∑

(ai + bi)xi ≥ A+B
Division

∑
aixi ≥ A⇒

∑
⌈ai/c⌉xi ≥ ⌈A/c⌉

A refutation ends with the inequality 0 ≥ 1

Complexity measures:

Length: # inequalities
Size: Count also bit size of representing all coefficients
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Cutting Planes vs. Resolution

Cutting planes can simulate resolution reasoning efficiently and
can be exponentially stronger
(e.g., for PHP, just count and argue that #pigeons > #holes)

And 0-1 linear inequalities are similar to but much more concise
than CNF

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)

∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)
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Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours
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ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and
circuit complexity

From small cutting planes proof, build small circuit of special
type that can decide whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some exciting contributions in [HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for
cutting planes [DT20]!
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting
planes reasoning developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities
[BLLM14, EN20], but this doesn’t work so well in practice

Better to encode problem with 0-1 inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can
sometimes be better in theory [GNY19]

. . . And most often also in practice [EN18]
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Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can
sometimes be better in theory [GNY19]

. . . And most often also in practice [EN18]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 44/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali-Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = 1

Sherali-Adams (SA) (αk ∈ R+)
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

SA, SoS, and Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali-Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
while Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system, except it cannot do parity
reasoning efficiently [GV01, Gri01]

Survey [FKP19] is recommended for more reading
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Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]
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Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution [Tse68]

Resolution rule
C1 ∨ x C2 ∨ x

C1 ∨ C2

Extension rule introducing clauses

a ∨ x ∨ y a ∨ x a ∨ y

for fresh variable a (encoding that a↔ (x ∧ y) must hold)
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Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution and SAT Solving

Closely related (and equivalent) to DRAT system used to justify
correctness of some SAT preprocessing techniques [JHB12]

DRAT also used for SAT solver proof logging

Attempts to combine extended resolution with CDCL in, e.g.,
[AKS10, Hua10]

Without restrictions, corresponds to extremely strong extended
Frege system [CR79] — pretty much no lower bounds known

To analyse solvers using extended resolution, would need to:

Describe heuristics/rules actually used
See if possible to reason about such restricted proof system
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Some More References for Further Reading

Handbook of Satisfiability
(Especially chapter 7 ,)

[BHvMW21]

Proof Complexity
by Jan Kraj́ıček

[Kra19]
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Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ Conflict-driven clause learning
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief (or non-existent) discussion of some other proof systems:

Sherali-Adams
Sums of squares
Stabbing planes
Extended resolution

Proof complexity can

Help analyse state-of-the-art algorithms
Give ideas for new approaches
Be a fun playground for theory-practice interaction!

Thank you for your attention!
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