
Complexity Theory for Real-World Computation

?

Jakob Nordström

University of Copenhagen and Lund University

Complexity Days 2023
Paris, France

December 14, 2023

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 1/51



Complexity Theory for Real-World Computation?

Jakob Nordström

University of Copenhagen and Lund University

Complexity Days 2023
Paris, France

December 14, 2023

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 1/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours? 3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours? 3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours? 3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours? 3-colouring? Yes, but no 2-colouring

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

3-clique? Yes, but no 4-clique

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours?

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours?

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours?

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

Variables should be set to true or false

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all constraints?
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



Three Simple Problems. . .

Colouring

Does the graph G = (V,E)
have a colouring with k colours
such that all neighbours have
distinct colours?

Clique

Is there a clique in the graph
G = (V,E) with k vertices that
are all pairwise connected by edges
in E?

Sat

Given propositional logic formula,
is there a satisfying assignment?

Colouring: frequency allocation for mobile base stations
Clique: bioinformatics, computational chemistry
Sat: easily models these and many other problems

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 2/51



. . . with Huge Practical Implications

Some more examples of problems that can be encoded as
propositional logic formulas:

computer hardware verification
computer software testing
artificial intelligence
operations research
cryptography
bioinformatics
et cetera. . .

Leads to humongous formulas (100,000s or even 1,000,000s of
variables)

Can we use computers to solve these problems efficiently?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 3/51



Solving NP in Theory and Practice

Sat mentioned in Gödel’s letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers
[BS97, MS99, MMZ+01] that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 4/51



Solving NP in Theory and Practice

Sat mentioned in Gödel’s letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers
[BS97, MS99, MMZ+01] that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 4/51



Solving NP in Theory and Practice

Sat mentioned in Gödel’s letter in 1956 to von Neumann

Topic of intense research in computer science ever since 1960s

NP-complete, so probably very hard [Coo71, Lev73]

Assuming P ̸= NP, even impossible to meaningfully approximate
Colouring [Kho01, Zuc07]
Clique [Hås99]
Sat [Hås01]

Except that in practice, there are good algorithms for
Colouring [DLMM08, DLMO09, DLMM11]
Clique [Pro12, McC17]

and amazing conflict-driven clause learning (CDCL) solvers
[BS97, MS99, MMZ+01] that solve huge Sat formulas

How can we understand real-world algorithms for NP-hard problems?
This talk: Use proof complexity (not only conceivable answer)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 4/51



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of
reasoning it uses

View this method of reasoning as formal proof system, with each
single step efficiently verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this talk: Question 1 for different proof systems/algorithms
Study infeasible problems — proof of feasibility easy

Question 2: Separate talk — lots of recent exciting progress; mostly
negative (worst-case) results, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 5/51



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of
reasoning it uses

View this method of reasoning as formal proof system, with each
single step efficiently verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this talk: Question 1 for different proof systems/algorithms
Study infeasible problems — proof of feasibility easy

Question 2: Separate talk — lots of recent exciting progress; mostly
negative (worst-case) results, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 5/51



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of
reasoning it uses

View this method of reasoning as formal proof system, with each
single step efficiently verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this talk: Question 1 for different proof systems/algorithms
Study infeasible problems — proof of feasibility easy

Question 2: Separate talk — lots of recent exciting progress; mostly
negative (worst-case) results, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 5/51



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of
reasoning it uses

View this method of reasoning as formal proof system, with each
single step efficiently verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this talk: Question 1 for different proof systems/algorithms
Study infeasible problems — proof of feasibility easy

Question 2: Separate talk — lots of recent exciting progress; mostly
negative (worst-case) results, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 5/51



Algorithmic View of Proof Complexity

For any algorithm solving NP problem, describe which rules of
reasoning it uses

View this method of reasoning as formal proof system, with each
single step efficiently verifiable

Efficiency of algorithm splits into two questions:

1 Is there a short proof using rules in this proof system?

2 Can short proofs in the proof system be found efficiently?

Focus of this talk: Question 1 for different proof systems/algorithms
Study infeasible problems — proof of feasibility easy

Question 2: Separate talk — lots of recent exciting progress; mostly
negative (worst-case) results, e.g., [AM20, GKMP20, dRGN+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 5/51



Applications of Proof Complexity

Three applied reasons for proof complexity:

1 Understand real-world applied algorithmic paradigms [this talk]

2 Get ideas for algorithmic improvements (e.g.,
[EN18, EN20, DGD+21, DGN21, KBBN22])

3 Enhance algorithms to write machine-verifiable certificates of
correctness (e.g., [EGMN20, GMN20, GMM+20, GN21, GMN22,
GMNO22, BGMN23, BBN+23, GMM+24]

Or just view this as a convenient excuse to study nice computational
complexity problems for their own sake. . .,

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 6/51



Applications of Proof Complexity

Three applied reasons for proof complexity:

1 Understand real-world applied algorithmic paradigms [this talk]

2 Get ideas for algorithmic improvements (e.g.,
[EN18, EN20, DGD+21, DGN21, KBBN22])

3 Enhance algorithms to write machine-verifiable certificates of
correctness (e.g., [EGMN20, GMN20, GMM+20, GN21, GMN22,
GMNO22, BGMN23, BBN+23, GMM+24]

Or just view this as a convenient excuse to study nice computational
complexity problems for their own sake. . .,

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 6/51



Outline

1 Conflict-Driven Clause Learning and Resolution
The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

2 Algebraic and Semi-algebraic Approaches
Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

3 Some Proof Systems We Won’t Have Time for
Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 7/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Formal Description of Sat Problem

Variable x: takes value true (= 1) or false (= 0)

Literal ℓ: variable x or its negation x (write x instead of ¬x)
Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:
conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

Here is our example formula again:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 8/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Formal Description of Sat Problem

Variable x: takes value true (= 1) or false (= 0)

Literal ℓ: variable x or its negation x (write x instead of ¬x)
Clause C = ℓ1 ∨ · · · ∨ ℓk: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

Conjunctive normal form (CNF) formula F = C1 ∧ · · · ∧ Cm:
conjunction of clauses

The Satisfiability (or just Sat) Problem

Given a CNF formula F , is it satisfiable?

Here is our example formula again:

(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ u) ∧ (y ∨ u)

∧ (u ∨ v) ∧ (x ∨ v) ∧ (u ∨ w) ∧ (x ∨ u ∨ w)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 8/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 9/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1− x)(1− z) = 0

(1− y)z = 0

(1− x)y(1− u) = 0

yu = 0

(1− u)(1− v) = 0

xv = 0

u(1− w) = 0

xuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 9/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

1− x− z + xz = 0

z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 9/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

1− x− z + xz = 0

z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y + (1− z) ≥ 1

x+ (1− y) + u ≥ 1

(1− y) + (1− u) ≥ 1

u+ v ≥ 1

(1− x) + (1− v) ≥ 1

(1− u) + w ≥ 1

(1− x) + (1− u) + (1− w) ≥ 1

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 9/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

The Same Problem in Three Different Shapes

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

1− x− z + xz = 0

z − yz = 0

y − xy − yu+ xyu = 0

yu = 0

1− u− v + uv = 0

xv = 0

u− uw = 0

xuw = 0

x+ z ≥ 1

y − z ≥ 0

x− y + u ≥ 0

−y − u ≥ −1
u+ v ≥ 1

−x− v ≥ −1
−u+ w ≥ 0

−x− u− w ≥ −2

For true = 1 and false = 0, is there a {0, 1}-valued solution?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 9/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

State-of-the-Art SAT Solving in One Slide

High-level description of modern conflict-driven clause learning
(CDCL) SAT solving (as pioneered in [BS97, MS99, MMZ+01]):

Try to build satisfying assignment for formula (branching or
decision heuristic crucial)

When partial assignment violates formula, compute explanation
for conflict and add to formula as new clause (clause learning)

Every once in a while, restart from beginning (but save
computed info)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 10/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0 Decision

Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict-Driven Clause Learning (CDCL) by Example
Two kinds of assignments — illustrate on example formula:

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Decision
Free choice to assign value to variable

Notation p
d
= 0

Unit propagation
Forced choice to avoid falsifying clause
Given p = 0, clause p ∨ u forces u = 0

Notation u
p∨u
= 0 (p ∨ u is reason clause)

Always propagate if possible, else decide
Add to assignment trail
Until satisfying assignment or conflict

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 11/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by removing last decision
level & flipping last decision

But want to learn from conflict and cut away
as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &
removing z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 12/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by removing last decision
level & flipping last decision

But want to learn from conflict and cut away
as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &
removing z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 12/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

decision
level 1

decision
level 2

decision
level 3

Could backtrack by removing last decision
level & flipping last decision

But want to learn from conflict and cut away
as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &
removing z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 12/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

Could backtrack by removing last decision
level & flipping last decision

But want to learn from conflict and cut away
as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &
removing z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 12/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Conflict Analysis
Time to analyse this conflict and learn from it!

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Could backtrack by removing last decision
level & flipping last decision

But want to learn from conflict and cut away
as much of search space as possible

Case analysis over z for last two clauses:

x ∨ y ∨ z wants z = 1

y ∨ z wants z = 0

Resolve clauses by merging them &
removing z — must satisfy x ∨ y

Repeat until UIP clause with only 1 variable
after last decision — learn and backjump

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 12/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥
Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Complete Toy Example for CDCL Execution
Backjump: undo max #decisions while learned clause propagates

(p ∨ u)∧ (q ∨ r)∧ (r ∨ w)∧ (u ∨ x ∨ y)∧ (x ∨ y ∨ z)∧ (x ∨ z)∧ (y ∨ z)∧ (x ∨ z)∧ (p ∨ u)

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Assertion level 1 (max for non-UIP literal in
learned clause) — keep trail to that level

Now UIP literal guaranteed to flip (assert) —
but this is a propagation, not a decision

Then continue as before. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 13/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]

Start with clauses of CNF formula (axioms)

Derive new clauses by resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 14/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

SAT Solver Analysis and the Resolution Proof System

How to make rigorous analysis of SAT solver performance?
Many intricate, hard-to-understand heuristics
So focus instead on underlying method of reasoning

Resolution proof system [Bla37, Rob65]

Start with clauses of CNF formula (axioms)

Derive new clauses by resolution rule

C1 ∨ x C2 ∨ x
C1 ∨ C2

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 14/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Resolution Proofs by Contradction

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

Observation

If F is a satisfiable CNF formula and D is derived from clauses
D1, D2 ∈ F by the resolution rule, then F ∧D is satisfiable.

So can prove F unsatisfiable by deriving the unsatisfiable empty
clause (denoted ⊥) from F by resolution

Such proof by contradiction also called resolution refutation

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 15/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Resolution Proofs by Contradction

Resolution rule:
C1 ∨ x C2 ∨ x

C1 ∨ C2

Observation

If F is a satisfiable CNF formula and D is derived from clauses
D1, D2 ∈ F by the resolution rule, then F ∧D is satisfiable.

So can prove F unsatisfiable by deriving the unsatisfiable empty
clause (denoted ⊥) from F by resolution

Such proof by contradiction also called resolution refutation

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 15/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof. . . from our example CDCL execution by
stringing together conflict analyses:

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 16/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution. . . by
stringing together conflict analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

y
u∨x∨y
= 1

z
x∨y∨z
= 1

y∨z

⊥

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

z
x∨z
= 1

x∨z

⊥

x

x
x
=0

u
u∨x
= 1

p
p∨u
= 1

p∨u

⊥

u

x

⊥

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 16/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution by
stringing together conflict analyses:

p
d
=0

u
p∨u
= 0

q
d
=0

r
q∨r
= 1

w
r∨w
= 1

x
d
=0

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

p
d
=0

u
p∨u
= 0

x
u∨x
= 1

x ∨ z

x ∨ z

x

x
x
=0

u
u∨x
= 1

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 16/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL and Resolution Proofs

Obtain resolution proof from our example CDCL execution by
stringing together conflict analyses:

u ∨ x ∨ y

x ∨ y ∨ z

y ∨ z

x ∨ y

u ∨ x

x ∨ z

x ∨ z

x

p ∨ u

p ∨ u

u

x

⊥

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 16/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in
this presentation to be able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics
and optimizations that we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning
about propositional logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but

this gets complicated and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 17/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in
this presentation to be able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics
and optimizations that we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning
about propositional logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but

this gets complicated and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 17/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in
this presentation to be able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics
and optimizations that we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning
about propositional logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but

this gets complicated and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 17/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in
this presentation to be able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics
and optimizations that we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning
about propositional logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but

this gets complicated and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 17/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in
this presentation to be able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics
and optimizations that we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning
about propositional logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but

this gets complicated and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 17/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

CDCL Running Time and General Resolution Proof Size

Can extract general resolution proof from CDCL execution

Requires an argument, of course, but you have seen enough in
this presentation to be able to fill in the required details. . .

This holds even for CDCL solvers with sophisticated heuristics
and optimizations that we have not discussed∗

Hence, lower bounds on resolution proof size ⇒
lower bounds on CDCL running time

Lower (and upper) bounds for different methods of reasoning
about propositional logic formulas studied in proof complexity

(*) Except for some preprocessing techniques, which is an important omission, but

this gets complicated and we don’t have time to go into details. . .

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 17/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof
complexity lower bounds for (seemingly) “obvious” formulas

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 18/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof
complexity lower bounds for (seemingly) “obvious” formulas

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 18/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Current State of Affairs in SAT Solving

State-of-the-art CDCL solvers often perform amazingly well
(“SAT is easy in practice”)

Very poor theoretical understanding:

Why do heuristics work?
Why are applied instances easy?

Paradox: resolution quite weak proof system; many strong proof
complexity lower bounds for (seemingly) “obvious” formulas

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 18/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 19/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 19/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (1/3)

Pigeonhole principle (PHP) formulas [Hak85]
“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i → hole j”; 1 ≤ i ≤ n+ 1; 1 ≤ j ≤ n

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i ̸= i′

Can also add “functionality” and “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j ̸= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Even onto functional PHP hard — “resolution cannot count”

Resolution proof requires exp(Ω(n)) = exp
(
Ω
(

3
√
N
))

clauses
(measured in terms of formula size N)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 19/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander
graphs — “resolution cannot count mod 2”

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 20/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander
graphs — “resolution cannot count mod 2”

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 20/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander
graphs — “resolution cannot count mod 2”

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 20/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas For Resolution (2/3)

Tseitin formulas [Urq87]
“Sum of degrees of vertices in graph is even”

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

1 1

0

x w

u

y

z

(u ∨ x) ∧ (y ∨ z)

∧ (u ∨ x) ∧ (y ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

∧ (w ∨ x ∨ y) ∧ (u ∨ w ∨ z)

Requires proof size exp
(
Ω
(
N
))

on well-connected so-called expander
graphs — “resolution cannot count mod 2”

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 20/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But not Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 21/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But not Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 21/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

The Satisfiability Problem in Different Shapes
Conflict-Driven Clause Learning (CDCL)
Resolution Proof System

Examples of Hard Formulas for Resolution (3/3)

Random k-CNF formulas [CS88]
∆n randomly sampled k-clauses over n variables
(∆ ≳ 4.5 sufficient to get unsatisfiable 3-CNF almost surely)

Again lower bound exp
(
Ω
(
N
))

And more. . .

Colouring [BCMM05]

Zero-one designs [Spe10, VS10, MN14]

Et cetera. . . (See, e.g., [BN21] for overview)

But not Clique!

Refuting existence of k-clique should require proof size nΩ(k)

Only known for restricted so-called regular resolution [ABdR+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 21/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 22/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 22/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Sat as System of Polynomial Equations

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to polynomial equations∏
i∈P

(1− xi) ·
∏
j∈N

xj = 0

Add Boolean axioms
x2j − xj = 0

for all variables

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 22/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Hilbert’s Nullstellensatz

Consider any system of polynomial equations

p1(x1, . . . , xn) = 0 x21 − x1 = 0

p2(x1, . . . , xn) = 0 x22 − x2 = 0

...
...

pm(x1, . . . , xn) = 0 x2n − xn = 0

in polynomial ring over field F

Hilbert’s Nullstellensatz

System infeasible ⇔ exist qi, rj ∈ F[x1, . . . , xn] such that

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 23/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Hilbert’s Nullstellensatz

Consider any system of polynomial equations

p1(x1, . . . , xn) = 0 x21 − x1 = 0

p2(x1, . . . , xn) = 0 x22 − x2 = 0

...
...

pm(x1, . . . , xn) = 0 x2n − xn = 0

in polynomial ring over field F

Hilbert’s Nullstellensatz

System infeasible ⇔ exist qi, rj ∈ F[x1, . . . , xn] such that

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 23/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Proof System [BIK+94]

Nullstellensatz refutation of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

is (syntactic) equality

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Complexity measures of refutations:

Size: number of monomials (when all polynomials expanded out)

Degree: highest total degree of any polynomial

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 24/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Proof System [BIK+94]

Nullstellensatz refutation of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

is (syntactic) equality

m∑
i=1

qi(x1, . . . , xn) · pi(x1, . . . , xn) +
n∑

j=1

rj(x1, . . . , xn) · (x2j − xj) = 1

Complexity measures of refutations:

Size: number of monomials (when all polynomials expanded out)

Degree: highest total degree of any polynomial

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 24/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 25/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 25/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 25/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 25/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Example (Not Expanded out)

(x ∨ z) ∧ (y ∨ ¬z) ∧ (x ∨ ¬y ∨ u) ∧ (¬y ∨ ¬u)
∧ (u ∨ v) ∧ (¬x ∨ ¬v) ∧ (¬u ∨ w) ∧ (¬x ∨ ¬u ∨ ¬w)

(1− y) · (1− x)(1− z)

+ (1− x) · (1− y)z

+ 1 · (1− x)y(1− u)

+ (1− x) · yu
+ x · (1− u)(1− v)

+ (1− u) ·xv
+ x ·u(1− w)

+ 1 ·xuw
= 1

Size 27
Degree 3
(No use of Boolean axioms)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 25/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Nullstellensatz Proof Search

Solve linear system of equations with coefficients of
polynomials qi, rj as unknowns

Used successfully to solve, e.g., graph colouring problems
[DLMM08, DLMO09, DLMM11]

Running time grows exponentially with degree, though
high-degree refutations can be very small [BCIP02, dRMNR21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 26/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1−x1)(1−x2)(1−x3) = 1−x1−x2−x3+x1x2+x1x3+x2x3−x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size
exponentially [dRLNS21] (also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 27/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1−x1)(1−x2)(1−x3) = 1−x1−x2−x3+x1x2+x1x3+x2x3−x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size
exponentially [dRLNS21] (also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 27/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1−x1)(1−x2)(1−x3) = 1−x1−x2−x3+x1x2+x1x3+x2x3−x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size
exponentially [dRLNS21] (also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 27/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1−x1)(1−x2)(1−x3) = 1−x1−x2−x3+x1x2+x1x3+x2x3−x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size
exponentially [dRLNS21] (also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 27/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dual Variables

Annoying problem: x1 ∨ x2 ∨ x3 translates to polynomial

(1−x1)(1−x2)(1−x3) = 1−x1−x2−x3+x1x2+x1x3+x2x3−x1x2x3

More generally, exponential blow-up in # positive literals

Fix: introduce dual variables x′i and axioms xi + x′i − 1 = 0

Translate C =
∨

i∈P xi ∨
∨

j∈N xj to polynomial equations∏
i∈P

x′i ·
∏
j∈N

xj = 0

Doesn’t affect degree (obviously), but can decrease size
exponentially [dRLNS21] (also for other algebraic proof systems)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 27/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

xj + x′j − 1 = 0 j ∈ [n]

⇕
1 lies in polynomial ideal I generated by these polynomials

Ideal I:
1 p, q ∈ I ⇒ p+ q ∈ I
2 p ∈ I ⇒ r · q ∈ I for any r

Compute polynomials in this ideal I step by step

Use “multivariate division” to check whether 1 lies in ideal or not
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 28/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Dynamic Construction of Nullstellensatz Certificates

Nullstellensatz again

Infeasibility of

pi(x1, . . . , xn) = 0 i ∈ [m]

x2j − xj = 0 j ∈ [n]

xj + x′j − 1 = 0 j ∈ [n]

⇕
1 lies in polynomial ideal I generated by these polynomials

Ideal I:
1 p, q ∈ I ⇒ p+ q ∈ I
2 p ∈ I ⇒ r · q ∈ I for any r

Compute polynomials in this ideal I step by step

Use “multivariate division” to check whether 1 lies in ideal or not
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 28/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:

1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)

If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of
polynomials G until no further reductions possible

G is a Gröbner basis if final result uniquely determined

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 29/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:

1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)

If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of
polynomials G until no further reductions possible

G is a Gröbner basis if final result uniquely determined

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 29/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner Bases: Admissible Orderings and Leading Terms

Admissible ordering ⪯ on monomials m,m′, t:

1 m ⪯ m′ ⇒ t ·m ⪯ t ·m′

2 m ⪯ t ·m

Examples:

Lexicographic

Degree-lexicographic

Can write p = lt(p) + p′ for lt(p) leading term (largest w.r.t. ⪯)

If lt(p) = t · lt(q), can reduce p mod q by computing p− t · q

“Multivariate division”: Reduce p modulo all q in set of
polynomials G until no further reductions possible

G is a Gröbner basis if final result uniquely determined

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 29/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner Bases: Buchberger’s Algorithm

Buchberger’s algorithm for computing Gröbner bases (very rough)

1 Let G := all axioms

2 Pick unprocessed pair p, q ∈ G or terminate if none exists

3 Compute p′ = tp · p and q′ = tq · q to make leading terms cancel

4 Set S := p′ − q′; reduce S mod G with multivariate division;
add result to G if non-zero

5 Go to 2

Facts:

Buchberger’s algorithm computes Gröbner basis

At termination, 1 ∈ G ⇔ polynomial equations infeasible

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 30/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner Bases: Buchberger’s Algorithm

Buchberger’s algorithm for computing Gröbner bases (very rough)

1 Let G := all axioms

2 Pick unprocessed pair p, q ∈ G or terminate if none exists

3 Compute p′ = tp · p and q′ = tq · q to make leading terms cancel

4 Set S := p′ − q′; reduce S mod G with multivariate division;
add result to G if non-zero

5 Go to 2

Facts:

Buchberger’s algorithm computes Gröbner basis

At termination, 1 ∈ G ⇔ polynomial equations infeasible

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 30/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus [CEI96, ABRW02]

Compute polynomials in ideal I generated by pi, x
2
j − xj , and

xj + x′j − 1 step by step:

pi ∈ I, x2
j − xj ∈ I, and xj + x′

j − 1 ∈ I
(axioms)
If p, q ∈ I, then αp+ βq ∈ I for any α, β ∈ F
(linear combination)
If p ∈ I, then m · p ∈ I for any monomial m =

∏
j xj

(multiplication)

A refutation is a derivation ending with the polynomial 1

Complexity measures:
Size: total number of monomials in all polynomials in derivation
expanded out
Degree: highest total degree of any polynomial

Polynomial calculus (much) stronger than Nullstellensatz w.r.t.
both size and degree

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 31/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus [CEI96, ABRW02]

Compute polynomials in ideal I generated by pi, x
2
j − xj , and

xj + x′j − 1 step by step:

pi ∈ I, x2
j − xj ∈ I, and xj + x′

j − 1 ∈ I
(axioms)
If p, q ∈ I, then αp+ βq ∈ I for any α, β ∈ F
(linear combination)
If p ∈ I, then m · p ∈ I for any monomial m =

∏
j xj

(multiplication)

A refutation is a derivation ending with the polynomial 1

Complexity measures:
Size: total number of monomials in all polynomials in derivation
expanded out
Degree: highest total degree of any polynomial

Polynomial calculus (much) stronger than Nullstellensatz w.r.t.
both size and degree

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 31/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently
step by step

Example: Resolution step

x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 32/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently
step by step

Example: Resolution step

x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 32/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus Can Simulate Resolution

Polynomial calculus can always simulate resolution proofs efficiently
step by step

Example: Resolution step

x ∨ y ∨ z y ∨ z

x ∨ y

simulated by polynomial calculus derivation

x′yz′

yz

x′yz

z + z′ − 1

x′yz + x′yz′ − x′y

−x′yz′ + x′y

x′y

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 32/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field
characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 33/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field
characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 33/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Polynomial Calculus is Strictly Stronger than Resolution

Polynomial calculus can be exponentially stronger than resolution

For instance:

Tseitin formulas on expander graphs if F = GF(2)

Onto functional pigeonhole principle over any field [Rii93]

But other versions of pigeonhole principle formulas remain hard:

“vanilla” PHP [Raz98, AR03]

onto PHP [AR03]

functional PHP [MN15]

Other hard formulas:

Tseitin-like formulas for counting mod p if p ̸= field
characteristic [BGIP01]
Random k-CNF formulas

all characteristics except 2 [BI99]
all characteristics [AR03]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 33/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Colouring and Clique for Polynomial Calculus

Colouring

Exponential worst-case lower bounds in [LN17]

Exponential average-case lower bounds in [CdRN+23]

Clique

Essentially nothing known!

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 34/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but
promise of performance improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that
too little work has been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit
verification quite successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 35/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but
promise of performance improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that
too little work has been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit
verification quite successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 35/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but
promise of performance improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that
too little work has been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit
verification quite successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 35/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

What About Algebraic SAT Solvers?

Excitement about Gröbner basis approach after [CEI96], but
promise of performance improvement failed to deliver

Meanwhile: the CDCL revolution in late 1990s. . .

Some current SAT solvers do Gaussian elimination, but this is
only very limited form of polynomial calculus

Is it harder to build good algebraic SAT solvers, or is it just that
too little work has been done (or both)?

Work in [KFB20, KB20, KBK20a, KBK20b, KB21] on circuit
verification quite successful, but struggles with monomial blow-up

Use dual variables! [KBBN22]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 35/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner bases: Some Problems and Questions

1 Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info
Possible to use conflict-driven paradigm?!

2 Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

3 Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 36/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner bases: Some Problems and Questions

1 Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info
Possible to use conflict-driven paradigm?!

2 Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

3 Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 36/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Gröbner bases: Some Problems and Questions

1 Buchberger not a great SAT solving algorithm
Slow and memory-intensive, and computes too much info
Possible to use conflict-driven paradigm?!

2 Dual variables increase reasoning power exponentially [dRLNS21]
But are immediately eliminated by multivariate division
Possible to design dual-variable-aware Buchberger?!

3 Analysis of polynomial calculus uses degree-lexicographic ordering
In computational algebra, many other orderings used
Prove proof complexity separation results for different orderings?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 36/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 37/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 37/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Sat as System of 0–1 Integer Linear Inequalities

Given CNF formula F =
∧m

i=1Ci

Translate clauses
C =

∨
i∈P

xi ∨
∨
j∈N

xj

to 0-1 integer linear inequalities∑
i∈P

xi +
∑
j∈N

(1− xj) ≥ 1

Add variable axioms

xj ≥ 0

−xj ≥ −1

for all variables

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 37/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Cutting Planes Proof System [CCT87]

Cutting planes introduced in [CCT87] to model integer linear
programming algorithm in [Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities

Cutting planes derivation rules

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

c ∈ N+

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

Division

∑
aixi ≥ A∑

⌈ai/c⌉xi ≥ ⌈A/c⌉
c ∈ N+

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 38/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Cutting Planes Proof System [CCT87]

Cutting planes introduced in [CCT87] to model integer linear
programming algorithm in [Gom63, Chv73]

Can be applied to any system of 0-1 integer linear inequalities

Cutting planes derivation rules

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

c ∈ N+

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

Division

∑
aixi ≥ A∑

⌈ai/c⌉xi ≥ ⌈A/c⌉
c ∈ N+

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 38/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Cutting Planes Derivations and Refutations

A cutting planes derivation is a sequence of 0-1 integer linear
inequalities derived using

Axioms (clauses and variable bounds)
Multiplication

∑
aixi ≥ A⇒

∑
caixi ≥ cA

Addition
∑

aixi ≥ A,
∑

bixi ≥ B ⇒
∑

(ai + bi)xi ≥ A+B
Division

∑
aixi ≥ A⇒

∑
⌈ai/c⌉xi ≥ ⌈A/c⌉

A refutation ends with the inequality 0 ≥ 1

Complexity measures:

Length: # inequalities
Size: Count also bit size of representing all coefficients

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 39/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Cutting Planes vs. Resolution

Cutting planes can simulate resolution reasoning efficiently and
can be exponentially stronger
(e.g., for PHP, just count and argue that #pigeons > #holes)

And 0-1 linear inequalities are similar to but much more concise
than CNF

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)

∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 40/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Cutting Planes vs. Resolution

Cutting planes can simulate resolution reasoning efficiently and
can be exponentially stronger
(e.g., for PHP, just count and argue that #pigeons > #holes)

And 0-1 linear inequalities are similar to but much more concise
than CNF

Compare
x1 + x2 + x3 + x4 + x5 + x6 ≥ 3

and

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ x6)

∧(x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨ x6) ∧ (x1 ∨ x2 ∨ x5 ∨ x6)

∧(x1 ∨ x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x6) ∧ (x1 ∨ x3 ∨ x5 ∨ x6)

∧(x1 ∨ x4 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4 ∨ x6)

∧(x2 ∨ x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x5 ∨ x6) ∧ (x3 ∨ x4 ∨ x5 ∨ x6)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 40/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 41/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 41/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Hard Formulas for Cutting Planes

Clique-colouring formulas [Pud97]
“A graph with an m-clique is not (m− 1)-colourable”

Variables

pi,j indicators of the edges in graph; 1 ≤ i < j ≤ n

qk,i identify members of m-clique; 1 ≤ k ≤ m, 1 ≤ i ≤ n

ri,ℓ specify colouring of vertices; 1 ≤ ℓ ≤ m− 1, 1 ≤ i ≤ n

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n some vertex is the kth member of clique

qk,i ∨ qk′,i clique members are uniquely defined (k ̸= k′)

pi,j ∨ qk,i ∨ qk′,j clique members are connected by edges

ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 every vertex i has a colour

pi,j ∨ ri,ℓ ∨ rj,ℓ neighbours have distinct colours

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 41/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and
circuit complexity

From small cutting planes proof, build small circuit of special
type that can decide whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some exciting contributions in [HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for
cutting planes [DT20]!

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 42/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and
circuit complexity

From small cutting planes proof, build small circuit of special
type that can decide whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some exciting contributions in [HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for
cutting planes [DT20]!

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 42/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

More Hard Formulas for Cutting Planes?

Lower bound for clique-colouring formulas uses interpolation and
circuit complexity

From small cutting planes proof, build small circuit of special
type that can decide whether graph has clique

Prove separately that no such small circuits can exist

Hence, no small cutting planes proofs can exist either

Cutting planes not well understood at all
Clear need for development of new analysis methods
Some exciting contributions in [HP17, FPPR22, GGKS20, Sok23]

Nothing known for Colouring or Clique
Surprisingly, Tseitin formulas are at most quasi-polynomially hard for
cutting planes [DT20]!

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 42/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting
planes reasoning developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities
[BLLM14, EN20], but this doesn’t work so well in practice

Better to encode problem with 0-1 inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 43/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting
planes reasoning developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities
[BLLM14, EN20], but this doesn’t work so well in practice

Better to encode problem with 0-1 inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 43/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting
planes reasoning developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities
[BLLM14, EN20], but this doesn’t work so well in practice

Better to encode problem with 0-1 inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 43/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

SAT Solvers Based on Cutting Planes?

So-called pseudo-Boolean (PB) solvers using (subset of) cutting
planes reasoning developed in, e.g., [CK05, SS06, LP10, EN18]

Perhaps counter-intuitively, hard to make competitive with CDCL

Challenge 1: Conjunctive normal form

Pseudo-Boolean solvers terrible for CNF input

Solvers can rewrite CNF to more helpful 0-1 linear inequalities
[BLLM14, EN20], but this doesn’t work so well in practice

Better to encode problem with 0-1 inequalities from the start

Challenge 2: Increased degrees of freedom(!?)

Cutting planes much smarter method of reasoning

But this makes it trickier to design smart search algorithms

Is it truly harder to build good pseudo-Boolean solvers?
Or has just so much more work has been put into CDCL solvers?

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 43/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can
sometimes be better in theory [GNY19]

. . . And most often also in practice [EN18]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 44/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can
sometimes be better in theory [GNY19]

. . . And most often also in practice [EN18]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 44/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Nullstellensatz
Gröbner Bases and Polynomial Calculus
Cutting Planes and Pseudo-Boolean Solving

Division Versus Saturation

Use negated literals as needed to get all ai, A positive

Boolean derivation rules for 0–1 integer linear inequalities

Division

∑
aiℓi ≥ A∑

⌈ai/c⌉ℓi ≥ ⌈A/c⌉
c ∈ N+

Saturation

∑
aiℓi ≥ A∑

min{ai, A} · ℓi ≥ A

Complexity literature of cutting planes uses division [CCT87]

Pseudo-Boolean solvers instead adopted saturation [CK05, LP10]

Open how the two variants compare, but clear that division can
sometimes be better in theory [GNY19]

. . . And most often also in practice [EN18]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 44/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali-Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = 1

Sherali-Adams (SA) (αk ∈ R+)
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 45/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali-Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = −1

Sherali-Adams (SA) (αk ∈ R+)
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +
s∑

k=1

s2k = −1

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 45/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali-Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = −1

Sherali-Adams (SA) (αk ∈ R+)
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 45/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Sherali-Adams (SA) and Sums of Squares (SoS)

Refutation of pi ∈ R[x1, . . . , xn], i ∈ [m], and x2j − xj , j ∈ [n]

Nullstellensatz
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) = −1

Sherali-Adams (SA) (αk ∈ R+)
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

t∑
k=1

αk

∏
i∈Pt

(1− xi)·
∏
j∈Nt

xj = −1

Sums of squares (SoS) (sk ∈ R[x1, . . . , xn])
m∑
i=1

qi · pi +
n∑

j=1

rj · (x2j − xj) +

s∑
k=1

s2k = −1

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 45/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

SA, SoS, and Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali-Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
while Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system, except it cannot do parity
reasoning efficiently [GV01, Gri01]

Survey [FKP19] is recommended for more reading

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 46/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

SA, SoS, and Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali-Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
while Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system, except it cannot do parity
reasoning efficiently [GV01, Gri01]

Survey [FKP19] is recommended for more reading

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 46/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

SA, SoS, and Other Proof Systems

Sherali-Adams models linear programming (LP) hierarchies

Sums of squares models semidefinite programming (SDP) hierarchies

Strict hierarchy (over R):
Nullstellensatz

Sherali-Adams

Sums of squares

Sums of squares is strictly stronger than polynomial calculus (over R)
while Sherali-Adams and polynomial calculus are incomparable [Ber18]

Sums of squares very strong proof system, except it cannot do parity
reasoning efficiently [GV01, Gri01]

Survey [FKP19] is recommended for more reading

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 46/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Stabbing Planes [BFI+18]

Intended to model modern 0-1 integer linear programming

Stabbing planes refutation of set of 0-1 integer linear inequalities S
1 If polytope S is empty over R, terminate this branch

2 Otherwise, pick new inequality
∑

i aiℓi ≥ A to branch on

3 Recurse with S := S ∪
{∑

i aiℓi ≥ A
}

4 Recurse with S := S ∪
{∑

i aiℓi ≤ A− 1
}

Complexity measures:

Length: # branching nodes / sets S
Size: Count also bit size for representing all coefficients

Cutting planes is simulated efficiently by stabbing planes [BFI+18]

Stabbing planes with polynomial-size coefficient can be simulated by
cutting planes with quasi-polynomial overhead [DT20, FGI+21]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 47/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution [Tse68]

Resolution rule
C1 ∨ x C2 ∨ x

C1 ∨ C2

Extension rule introducing clauses

a ∨ x ∨ y a ∨ x a ∨ y

for fresh variable a (encoding that a↔ (x ∧ y) must hold)

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 48/51



Conflict-Driven Clause Learning and Resolution
Algebraic and Semi-algebraic Approaches

Some Proof Systems We Won’t Have Time for

Sherali-Adams and Sums of Squares
Stabbing Planes
Extended Resolution

Extended Resolution and SAT Solving

Closely related (and equivalent) to DRAT system used to justify
correctness of some SAT preprocessing techniques [JHB12]

DRAT also used for SAT solver proof logging

Attempts to combine extended resolution with CDCL in, e.g.,
[AKS10, Hua10]

Without restrictions, corresponds to extremely strong extended
Frege system [CR79] — pretty much no lower bounds known

To analyse solvers using extended resolution, would need to:

Describe heuristics/rules actually used
See if possible to reason about such restricted proof system

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 49/51



Some More References for Further Reading

Handbook of Satisfiability
(Especially chapter 7 ,)

[BHvMW21]

Proof Complexity
by Jan Kraj́ıček

[Kra19]

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 50/51



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ Conflict-driven clause learning
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief (or non-existent) discussion of some other proof systems:

Sherali-Adams
Sums of squares
Stabbing planes
Extended resolution

Proof complexity can

Help analyse state-of-the-art algorithms
Give ideas for new approaches
Be a fun playground for theory-practice interaction!

Thank you for your attention!
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 51/51



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ Conflict-driven clause learning
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief (or non-existent) discussion of some other proof systems:

Sherali-Adams
Sums of squares
Stabbing planes
Extended resolution

Proof complexity can

Help analyse state-of-the-art algorithms
Give ideas for new approaches
Be a fun playground for theory-practice interaction!

Thank you for your attention!
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 51/51



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ Conflict-driven clause learning
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief (or non-existent) discussion of some other proof systems:

Sherali-Adams
Sums of squares
Stabbing planes
Extended resolution

Proof complexity can

Help analyse state-of-the-art algorithms
Give ideas for new approaches
Be a fun playground for theory-practice interaction!

Thank you for your attention!
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 51/51



Summing up This Presentation

Overview of some proof systems used in combinatorial solving:

Resolution ←→ Conflict-driven clause learning
Nullstellensatz and polynomial calculus ←→ Gröbner bases
Cutting planes ←→ pseudo-Boolean solving

Very brief (or non-existent) discussion of some other proof systems:

Sherali-Adams
Sums of squares
Stabbing planes
Extended resolution

Proof complexity can

Help analyse state-of-the-art algorithms
Give ideas for new approaches
Be a fun playground for theory-practice interaction!

Thank you for your attention!
Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 51/51



References I

[ABdR+21] Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria,
Jakob Nordström, and Alexander Razborov. Clique is hard on average for
regular resolution. Journal of the ACM, 68(4):23:1–23:26, August 2021.
Preliminary version in STOC ’18.

[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi
Wigderson. Space complexity in propositional calculus. SIAM Journal on
Computing, 31(4):1184–1211, April 2002. Preliminary version in STOC ’00.

[AKS10] Gilles Audemard, George Katsirelos, and Laurent Simon. A restriction of
extended resolution for clause learning SAT solvers. In Proceedings of the
24th AAAI Conference on Artificial Intelligence (AAAI ’10), pages 15–20,
July 2010.

[AM20] Albert Atserias and Moritz Müller. Automating resolution is NP-hard.
Journal of the ACM, 67(5):31:1–31:17, October 2020. Preliminary version
in FOCS ’19.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 52/51



References II

[AR03] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for
polynomial calculus: Non-binomial case. Proceedings of the Steklov
Institute of Mathematics, 242:18–35, 2003. Available at
http://people.cs.uchicago.edu/~razborov/files/misha.pdf.
Preliminary version in FOCS ’01.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter
Vandesande. Certified core-guided MaxSAT solving. In Proceedings of the
29th International Conference on Automated Deduction (CADE-29),
volume 14132 of Lecture Notes in Computer Science, pages 1–22. Springer,
July 2023.

[BCIP02] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and
Toniann Pitassi. Homogenization and the polynomial calculus.
Computational Complexity, 11(3-4):91–108, 2002. Preliminary version in
ICALP ’00.

[BCMM05] Paul Beame, Joseph C. Culberson, David G. Mitchell, and Cristopher
Moore. The resolution complexity of random graph k-colorability. Discrete
Applied Mathematics, 153(1-3):25–47, December 2005.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 53/51

http://people.cs.uchicago.edu/~razborov/files/misha.pdf


References III

[Ber18] Christoph Berkholz. The relation between polynomial calculus,
Sherali-Adams, and sum-of-squares proofs. In Proceedings of the 35th
Symposium on Theoretical Aspects of Computer Science (STACS ’18),
volume 96 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 11:1–11:14, February 2018.

[BFI+18] Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova,
Denis Pankratov, Toniann Pitassi, and Robert Robere. Stabbing planes. In
Proceedings of the 9th Innovations in Theoretical Computer Science
Conference (ITCS ’18), volume 94 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 10:1–10:20, January 2018.

[BGIP01] Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi.
Linear gaps between degrees for the polynomial calculus modulo distinct
primes. Journal of Computer and System Sciences, 62(2):267–289, March
2001. Preliminary version in CCC ’99.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Certified dominance and symmetry breaking for combinatorial optimisation.
Journal of Artificial Intelligence Research, 77:1539–1589, August 2023.
Preliminary version in AAAI ’22.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 54/51



References IV

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability, volume 336 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2nd edition, February 2021.

[BI99] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the
polynomial calculus. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’99), pages 415–421, October
1999. Journal version in [BI10].

[BI10] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the
polynomial calculus. Computational Complexity, 19(4):501–519, 2010.
Preliminary version in FOCS ’99.

[BIK+94] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel
Pudlák. Lower bounds on Hilbert’s Nullstellensatz and propositional proofs.
In Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’94), pages 794–806, November 1994.

[Bla37] Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis,
University of Chicago, 1937.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 55/51



References V

[BLLM14] Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey.
Detecting cardinality constraints in CNF. In Proceedings of the 17th
International Conference on Theory and Applications of Satisfiability
Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science,
pages 285–301. Springer, July 2014.

[BN21] Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving.
In Biere et al. [BHvMW21], chapter 7, pages 233–350.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques
to solve real-world SAT instances. In Proceedings of the 14th National
Conference on Artificial Intelligence (AAAI ’97), pages 203–208, July 1997.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the
complexity of cutting-plane proofs. Discrete Applied Mathematics,
18(1):25–38, November 1987.

[CdRN+23] Jonas Conneryd, Susanna F. de Rezende, Jakob Nordström, Shuo Pang,
and Kilian Risse. Graph colouring is hard on average for polynomial calculus
and Nullstellensatz. In Proceedings of the 64th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’23), November 2023. To appear.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 56/51



References VI

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the
Groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of
the 28th Annual ACM Symposium on Theory of Computing (STOC ’96),
pages 174–183, May 1996.

[Chv73] Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial
problems. Discrete Mathematics, 4(1):305–337, 1973.

[CK05] Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint
solver. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24(3):305–317, March 2005. Preliminary version in DAC ’03.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing
(STOC ’71), pages 151–158, May 1971.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic, 44(1):36–50, March
1979. Preliminary version in STOC ’74.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution.
Journal of the ACM, 35(4):759–768, October 1988.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 57/51



References VII

[DGD+21] Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter
Stuckey. Cutting to the core of pseudo-Boolean optimization: Combining
core-guided search with cutting planes reasoning. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3750–3758,
February 2021.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax:
Integrating 0-1 integer linear programming with pseudo-Boolean
conflict-driven search. Constraints, 26(1–4):26–55, October 2021.
Preliminary version in CPAIOR ’20.

[DLMM08] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies. Hilbert’s
Nullstellensatz and an algorithm for proving combinatorial infeasibility. In
Proceedings of the 21st International Symposium on Symbolic and
Algebraic Computation (ISSAC ’08), pages 197–206, July 2008.

[DLMM11] Jesús A. De Loera, Jon Lee, Peter N. Malkin, and Susan Margulies.
Computing infeasibility certificates for combinatorial problems through
Hilbert’s Nullstellensatz. Journal of Symbolic Computation,
46(11):1260–1283, November 2011.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 58/51



References VIII

[DLMO09] Jesús A. De Loera, Jon Lee, Susan Margulies, and Shmuel Onn. Expressing
combinatorial problems by systems of polynomial equations and Hilbert’s
Nullstellensatz. Combinatorics, Probability and Computing, 18(4):551–582,
July 2009.

[dRGN+21] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi,
Robert Robere, and Dmitry Sokolov. Automating algebraic proof systems is
NP-hard. In Proceedings of the 53rd Annual ACM Symposium on Theory of
Computing (STOC ’21), pages 209–222, June 2021.

[dRLNS21] Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry
Sokolov. The power of negative reasoning. In Proceedings of the 36th
Annual Computational Complexity Conference (CCC ’21), volume 200 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1–40:24,
July 2021.

[dRMNR21] Susanna F. de Rezende, Or Meir, Jakob Nordström, and Robert Robere.
Nullstellensatz size-degree trade-offs from reversible pebbling.
Computational Complexity, 30:4:1–4:45, February 2021.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 59/51



References IX

[DT20] Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs.
In Proceedings of the 35th Annual Computational Complexity Conference
(CCC ’20), volume 169 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 34:1–34:35, July 2020.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying all differences using pseudo-Boolean reasoning. In Proceedings of
the 34th AAAI Conference on Artificial Intelligence (AAAI ’20), pages
1486–1494, February 2020.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster
pseudo-Boolean solving. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI ’18), pages 1291–1299, July
2018.

[EN20] Jan Elffers and Jakob Nordström. A cardinal improvement to
pseudo-Boolean solving. In Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI ’20), pages 1495–1503, February 2020.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 60/51



References X

[FGI+21] Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert
Robere, Li-Yang Tan, and Avi Wigderson. On the power and limitations of
branch and cut. In Proceedings of the 36th Annual Computational
Complexity Conference (CCC ’21), volume 200 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 6:1–6:30, July 2021.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs
and efficient algorithm design. Foundations and Trends in Theoretical
Computer Science, 14(1–2):1–221, December 2019.

[FPPR22] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere.
Random θ(logn)-CNFs are hard for cutting planes. Journal of the ACM,
69(3):19:1–19:32, June 2022. Preliminary version in FOCS ’17.

[GGKS20] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone
circuit lower bounds from resolution. Theory of Computing, 16(13):1–30,
2020. Preliminary version in STOC ’18.

[GKMP20] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating
cutting planes is NP-hard. In Proceedings of the 52nd Annual ACM
Symposium on Theory of Computing (STOC ’20), pages 68–77, June 2020.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 61/51



References XI

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick
Prosser, and James Trimble. Certifying solvers for clique and maximum
common (connected) subgraph problems. In Proceedings of the 26th
International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer
Science, pages 338–357. Springer, September 2020.

[GMM+24] Stephan Gocht, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström,
Andy Oertel, and Yong Kiam Tan. End-to-end verification for subgraph
solving. In Proceedings of the 368h AAAI Conference on Artificial
Intelligence (AAAI ’24), February 2024. To appear.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph
isomorphism meets cutting planes: Solving with certified solutions. In
Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 62/51



References XII

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable
constraint programming solver. In Proceedings of the 28th International
Conference on Principles and Practice of Constraint Programming (CP ’22),
volume 235 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel.
Certified CNF translations for pseudo-Boolean solving. In Proceedings of the
25th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’22), volume 236 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently
using pseudo-Boolean proofs. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI ’21), pages 3768–3777, February 2021.

[GNY19] Stephan Gocht, Jakob Nordström, and Amir Yehudayoff. On division versus
saturation in pseudo-Boolean solving. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence (IJCAI ’19), pages
1711–1718, August 2019.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 63/51



References XIII

[Gom63] Ralph E. Gomory. An algorithm for integer solutions of linear programs. In
R.L. Graves and P. Wolfe, editors, Recent Advances in Mathematical
Programming, pages 269–302. McGraw-Hill, New York, 1963.

[Gri01] Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus
proofs for the parity. Theoretical Computer Science, 259(1–2):613–622, May
2001.

[GV01] Dima Grigoriev and Nicolai Vorobjov. Complexity of Null- and
Positivstellensatz proofs. Annals of Pure and Applied Logic,
113(1–3):153–160, December 2001.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer
Science, 39(2-3):297–308, August 1985.

[Hås99] Johan Håstad. Clique is hard to approximate within n1−ϵ. Acta
Mathematica, 182:105–142, 1999. Preliminary version in FOCS ’96.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, July 2001. Preliminary version in STOC ’97.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 64/51



References XIV

[HP17] Pavel Hrubeš and Pavel Pudlák. Random formulas, monotone circuits, and
interpolation. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’17), pages 121–131, October
2017.

[Hua10] Jinbo Huang. Extended clause learning. Artificial Intelligence,
174(15):1277–1284, October 2010.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In
Proceedings of the 6th International Joint Conference on Automated
Reasoning (IJCAR ’12), volume 7364 of Lecture Notes in Computer
Science, pages 355–370. Springer, June 2012.

[KB20] Daniela Kaufmann and Armin Biere. Nullstellensatz-proofs for multiplier
verification. In Proceedings of the 22nd International Workshop on
Computer Algebra in Scientific Computing (CASC’ 20), volume 12291 of
Lecture Notes in Computer Science, pages 368–389. Springer, September
2020.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 65/51



References XV

[KB21] Daniela Kaufmann and Armin Biere. AMulet 2.0 for verifying multiplier
circuits. In Proceedings of the 27th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’21),
volume 12652 of Lecture Notes in Computer Science, pages 357–364.
Springer, March-April 2021.

[KBBN22] Daniela Kaufmann, Paul Beame, Armin Biere, and Jakob Nordström.
Adding dual variables to algebraic reasoning for circuit verification. In
Proceedings of the 25th Design, Automation and Test in Europe Conference
(DATE ’22), pages 1435–1440, March 2022.

[KBK20a] Daniela Kaufmann, Armin Biere, and Manuel Kauers. From DRUP to PAC
and back. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE ’20), pages 654–657, March 2020.

[KBK20b] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Incremental
column-wise verifiation of arithmetic circuits using computer algebra.
Formal Methods in Systems Design, 56(1–3):22–54, 2020. Preliminary
version in FMCAD ’17.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 66/51



References XVI

[KFB20] Daniela Kaufmann, Mathias Fleury, and Armin Biere. The proof checkers
Pacheck and Pastèque for the practical algebraic calculus. In Proceedings of
the 20th Conference on Formal Methods in Computer-Aided Design
(FMCAD ’20), pages 264–269, September 2020.

[Kho01] Subhash Khot. Improved inapproximability results for MaxClique, chromatic
number and approximate graph coloring. In Proceedings of the 42nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’01), pages
600–609, October 2001.

[Kra19] Jan Kraj́ıček. Proof Complexity, volume 170 of Encyclopedia of
Mathematics and Its Applications. Cambridge University Press, March 2019.

[Lev73] Leonid A. Levin. Universal sequential search problems. Problemy peredachi
informatsii, 9(3):115–116, 1973. In Russian. Available at
http://mi.mathnet.ru/ppi914.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 67/51

http://mi.mathnet.ru/ppi914


References XVII

[LN17] Massimo Lauria and Jakob Nordström. Graph colouring is hard for
algorithms based on Hilbert’s Nullstellensatz and Gröbner bases. In
Proceedings of the 32nd Annual Computational Complexity Conference
(CCC ’17), volume 79 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 2:1–2:20, July 2017.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation, 7:59–64, July 2010.

[McC17] Ciaran McCreesh. Solving Hard Subgraph Problems in Parallel. PhD thesis,
University of Glasgow, 2017.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of
the 38th Design Automation Conference (DAC ’01), pages 530–535, June
2001.

[MN14] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple
formulas. In Proceedings of the 17th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture
Notes in Computer Science, pages 121–137. Springer, July 2014.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 68/51



References XVIII

[MN15] Mladen Mikša and Jakob Nordström. A generalized method for proving
polynomial calculus degree lower bounds. In Proceedings of the 30th Annual
Computational Complexity Conference (CCC ’15), volume 33 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 467–487, June
2015.

[MS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Transactions on Computers,
48(5):506–521, May 1999. Preliminary version in ICCAD ’96.

[Pro12] Patrick Prosser. Exact algorithms for maximum clique: A computational
study. Algorithms, 5(4):545–587, November 2012.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. Journal of Symbolic Logic, 62(3):981–998,
September 1997.

[Raz98] Alexander A. Razborov. Lower bounds for the polynomial calculus.
Computational Complexity, 7(4):291–324, December 1998.

[Rii93] Søren Riis. Independence in Bounded Arithmetic. PhD thesis, University of
Oxford, 1993.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 69/51



References XIX

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

[Sok23] Dmitry Sokolov. Random (logn)-cnf are hard for cutting planes (again).
Technical Report TR23-086, Electronic Colloquium on Computational
Complexity (ECCC), June 2023.

[Spe10] Ivor Spence. sgen1: A generator of small but difficult satisfiability
benchmarks. Journal of Experimental Algorithmics, 15:1.2:1–1.2:15, March
2010.

[SS06] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean
SAT solver. Journal on Satisfiability, Boolean Modeling and Computation,
2(1-4):165–189, March 2006. Preliminary version in DATE ’05.

[Tse68] Grigori Tseitin. On the complexity of derivation in propositional calculus. In
A. O. Silenko, editor, Structures in Constructive Mathematics and
Mathematical Logic, Part II, pages 115–125. Consultants Bureau,
New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, January 1987.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 70/51



References XX

[VS10] Allen Van Gelder and Ivor Spence. Zero-one designs produce small hard
SAT instances. In Proceedings of the 13th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’10), volume 6175 of
Lecture Notes in Computer Science, pages 388–397. Springer, July 2010.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of
max clique and chromatic number. Theory of Computing, 3(6):103–128,
August 2007. Preliminary version in STOC ’06.

Jakob Nordström (UCPH & LU) Complexity Theory for Real-World Computation Complexity Days ’23 71/51


	Introductory Slides
	Main Talk
	Conflict-Driven Clause Learning and Resolution
	The Satisfiability Problem in Different Shapes 
	Conflict-Driven Clause Learning (CDCL)
	Resolution Proof System

	Algebraic and Semi-algebraic Approaches
	Nullstellensatz
	Gröbner Bases and Polynomial Calculus
	Cutting Planes and Pseudo-Boolean Solving

	Some Proof Systems We Won't Have Time for
	Sherali-Adams and Sums of Squares
	Stabbing Planes
	Extended Resolution


	Concluding Slides
	Appendix

