
Certified CNF Translations for Pseudo-Boolean Solving

Jakob Nordström

University of Copenhagen
and Lund University

32nd International Joint Conference
on Artificial Intelligence

Macau, China
August 19–25, 2023

SAT ’22 paper joint with Stephan Gocht, Ruben Martins, and Andy Oertel

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 1/14



Pseudo-Boolean (PB) Solving

0–1 integer linear
program:

pseudo-Boolean
formula:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

Pseudo-Boolean solver Result:
feasible/infeasibleResult:

SAT/UNSAT

Input: Pseudo-Boolean formula (a.k.a. 0–1 integer linear program)
▶ Collection of 0–1 integer linear constraints

Conflict-driven pseudo-Boolean solvers:
▶ Native: Sat4j [LP10], RoundingSat [EN18]
▶ SAT-based: MiniSat+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 2/14



Pseudo-Boolean (PB) Solving

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

Pseudo-Boolean solver Result:
feasible/infeasibleResult:
feasible/infeasible

Input: Pseudo-Boolean formula (a.k.a. 0–1 integer linear program)
▶ Collection of 0–1 integer linear constraints

Conflict-driven pseudo-Boolean solvers:
▶ Native: Sat4j [LP10], RoundingSat [EN18]
▶ SAT-based: MiniSat+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 2/14



Pseudo-Boolean (PB) Solving

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

Pseudo-Boolean solver Result:
feasible/infeasibleResult:
feasible/infeasible

Input: Pseudo-Boolean formula (a.k.a. 0–1 integer linear program)
▶ Collection of 0–1 integer linear constraints

Conflict-driven pseudo-Boolean solvers:
▶ Native: Sat4j [LP10], RoundingSat [EN18]
▶ SAT-based: MiniSat+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 2/14



Pseudo-Boolean (PB) Solving

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation SAT solver

CNF formula

Input: Pseudo-Boolean formula (a.k.a. 0–1 integer linear program)
▶ Collection of 0–1 integer linear constraints

Conflict-driven pseudo-Boolean solvers:
▶ Native: Sat4j [LP10], RoundingSat [EN18]
▶ SAT-based: MiniSat+ [ES06], Open-WBO [MML14], NaPS [SN15]

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 2/14



Certifying SAT Solver Results with Proof Logging

SAT solverInput Result

Proof

Proof checker Verification
of result

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 3/14



Certifying SAT Solver Results with Proof Logging

SAT solverInput Result

Proof

Proof checker Verification
of result

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 3/14



Certifying SAT Solver Results with Proof Logging

SAT solverInput Result

Proof

Proof checker Verification
of result

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 3/14



Certifying SAT Solver Results with Proof Logging

SAT solverInput Result

Proof

Proof checker Verification
of result

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 3/14



Certifying SAT Solver Results with Proof Logging

SAT solverInput Result

Proof

Proof checker Verification
of result

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 3/14



Certifying Pseudo-Boolean Solver Results with Proof Logging?

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation SAT solver

DRAT
checker

Verification
of result

CNF formula

✕

✕

Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]
PB-to-CNF translation uncertified!

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 4/14



Certifying Pseudo-Boolean Solver Results with Proof Logging?

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation SAT solver

DRAT
checker

Verification
of result

CNF formula

DRAT proof/
Solution

✕

✕

Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]
PB-to-CNF translation uncertified!

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 4/14



Certifying Pseudo-Boolean Solver Results with Proof Logging?

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation SAT solver

DRAT
checker

Verification
of result

CNF formula

DRAT proof/
Solution

✕

✕

Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]
PB-to-CNF translation uncertified!

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 4/14



Example Pseudo-Boolean-to-CNF Translation

ℓ1 + ℓ2 + ℓ3 ≥ 2

Meaning of si,j-variable:
si,j true ⇔ ℓ1 + . . . + ℓi ≥ j

𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

ℓ1 ∨ s1,1 ℓ2 ∨ s1,1 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,3

ℓ1 ∨ s1,1 ℓ2 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,2 ℓ3 ∨ s3,3

ℓ2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 ℓ3 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,2

∨

s3,2

ℓ2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 5/14



Example Pseudo-Boolean-to-CNF Translation

ℓ1 + ℓ2 + ℓ3 ≥ 2

Meaning of si,j-variable:
si,j true ⇔ ℓ1 + . . . + ℓi ≥ j

𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

ℓ1 ∨ s1,1 ℓ2 ∨ s1,1 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,3

ℓ1 ∨ s1,1 ℓ2 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,2 ℓ3 ∨ s3,3

ℓ2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 ℓ3 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,2

∨

s3,2

ℓ2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 5/14



Example Pseudo-Boolean-to-CNF Translation

ℓ1 + ℓ2 + ℓ3 ≥ 2

Meaning of si,j-variable:
si,j true ⇔ ℓ1 + . . . + ℓi ≥ j

𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

ℓ1 ∨ s1,1 ℓ2 ∨ s1,1 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,3

ℓ1 ∨ s1,1 ℓ2 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,2 ℓ3 ∨ s3,3

ℓ2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 ℓ3 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,2

∨

s3,2

ℓ2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 5/14



Example Pseudo-Boolean-to-CNF Translation

ℓ1 + ℓ2 + ℓ3 ≥ 2

Meaning of si,j-variable:
si,j true ⇔ ℓ1 + . . . + ℓi ≥ j

𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

ℓ1 ∨ s1,1 ℓ2 ∨ s1,1 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,3

ℓ1 ∨ s1,1 ℓ2 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,2 ℓ3 ∨ s3,3

ℓ2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 ℓ3 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,2

∨

s3,2

ℓ2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 5/14



Pseudo-Boolean Proof Logging with VeriPB

Inspired by SAT proof logging, but operates on 0–1 linear constraints
Supports efficient proof logging for

▶ SAT solving — including advanced techniques previously beyond efficient proof logging like
⋆ Gaussian elimination [GN21]
⋆ Symmetry breaking [BGMN23]

▶ SAT-based optimization (MaxSAT) approaches like
⋆ Model-improving search [VDB22]
⋆ Core-guided search [BBN+23]

▶ Subgraph problems [GMN20, GMM+20]
▶ Constraint programming [EGMN20, GMN22, MM23]

This work:
Proof logging for translating pseudo-Boolean constraints to CNF
General framework to certify many different encodings

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 6/14



Pseudo-Boolean Proof Logging with VeriPB

Inspired by SAT proof logging, but operates on 0–1 linear constraints
Supports efficient proof logging for

▶ SAT solving — including advanced techniques previously beyond efficient proof logging like
⋆ Gaussian elimination [GN21]
⋆ Symmetry breaking [BGMN23]

▶ SAT-based optimization (MaxSAT) approaches like
⋆ Model-improving search [VDB22]
⋆ Core-guided search [BBN+23]

▶ Subgraph problems [GMN20, GMM+20]
▶ Constraint programming [EGMN20, GMN22, MM23]

This work:
Proof logging for translating pseudo-Boolean constraints to CNF
General framework to certify many different encodings

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 6/14



End-to-End Verification for Pseudo-Boolean Solving

0–1 integer linear
program

SAT-based pseudo-Boolean solver

Result:
feasible/infeasible

PB-to-CNF
translation SAT solver

VeriPB
checker

Verification
of result

CNF formula

DRAT proof/
solution

PB proof

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 7/14



All the Technical Details on One Slide (or Not)
How pretty much all PB-to-CNF translations work:

1 Design circuit evaluating left-hand side of 0–1 integer linear constraint
2 Encode circuit to CNF using Tseitin translation (one new variable per circuit wire)
3 Enforce that circuit output says that the constraint is true

Important:
We don’t get to choose the translation to CNF clauses — the solver does
We should help solver print a VeriPB proof that clauses follow from the PB constraint

We solve this task by
1 Understanding the circuit design
2 Deriving CNF encoding of circuit (easy)
3 Proving circuit output is true (tricky, but using pseudo-Boolean reasoning really helps)

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 8/14



All the Technical Details on One Slide (or Not)
How pretty much all PB-to-CNF translations work:

1 Design circuit evaluating left-hand side of 0–1 integer linear constraint
2 Encode circuit to CNF using Tseitin translation (one new variable per circuit wire)
3 Enforce that circuit output says that the constraint is true

Important:
We don’t get to choose the translation to CNF clauses — the solver does
We should help solver print a VeriPB proof that clauses follow from the PB constraint

We solve this task by
1 Understanding the circuit design
2 Deriving CNF encoding of circuit (easy)
3 Proving circuit output is true (tricky, but using pseudo-Boolean reasoning really helps)

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 8/14



All the Technical Details on One Slide (or Not)
How pretty much all PB-to-CNF translations work:

1 Design circuit evaluating left-hand side of 0–1 integer linear constraint
2 Encode circuit to CNF using Tseitin translation (one new variable per circuit wire)
3 Enforce that circuit output says that the constraint is true

Important:
We don’t get to choose the translation to CNF clauses — the solver does
We should help solver print a VeriPB proof that clauses follow from the PB constraint

We solve this task by
1 Understanding the circuit design
2 Deriving CNF encoding of circuit (easy)
3 Proving circuit output is true (tricky, but using pseudo-Boolean reasoning really helps)

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 8/14



All the Technical Details on One Slide (or Not)
How pretty much all PB-to-CNF translations work:

1 Design circuit evaluating left-hand side of 0–1 integer linear constraint
2 Encode circuit to CNF using Tseitin translation (one new variable per circuit wire)
3 Enforce that circuit output says that the constraint is true

Important:
We don’t get to choose the translation to CNF clauses — the solver does
We should help solver print a VeriPB proof that clauses follow from the PB constraint

We solve this task by
1 Understanding the circuit design
2 Deriving CNF encoding of circuit (easy)
3 Proving circuit output is true (tricky, but using pseudo-Boolean reasoning really helps)

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 8/14



Experimental Evaluation

Certified translations for CNF encodings with VeritasPBLib1

▶ Sequential counter [Sin05]
▶ Totalizer [BB03]
▶ Generalized totalizer [JMM15]
▶ Adder network [ES06]

Proofs verified by proof checker VeriPB2

Formulas solved with fork of Kissat3 outputting VeriPB proofs
Benchmarks from PB 2016 Evaluation4 in 3 categories

▶ Only cardinality constraints (sequential counter, totalizer)
▶ Only general 0-1 ILP constraints (generalized totalizer, adder network)
▶ Mixed cardinality & general 0-1 ILP constraints (sequential counter + adder network)

1https://github.com/forge-lab/VeritasPBLib
2https://gitlab.com/MIAOresearch/software/VeriPB
3https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
4http://www.cril.univ-artois.fr/PB16/

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 9/14

https://github.com/forge-lab/VeritasPBLib
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
http://www.cril.univ-artois.fr/PB16/


CNF Size vs Proof Size in KiB

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og

gi
n
g

sequential
totalizer

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

CNF

P
ro
of

L
og

gi
n
g

adder
gte

seq+adder

Nice scaling for proof size in terms of original CNF formula size
Except for some sequential encoding cases (which is not such a great encoding anyway)

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 10/14



Translation Time vs Proof Checking Time in Seconds

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
o
n

sequential
totalizer

10−410−310−210−1 100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

translation

ve
ri

fi
ca

ti
o
n

adder
gte

seq+adder

Translation fast — only has to generate clauses and proof
Proof checking slower — has to verify full proof

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 11/14



Solving Time vs Proof Checking Time in Seconds

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

sequential
totalizer

10−4 10−3 10−2 10−1 100 101 102 103 104 10510−4

10−3

10−2

10−1

100

101

102

103

104

105

timeout

memout

solving

ve
rifi

ca
tio

n

adder
gte

seq+adder

Room for improvement of end-to-end proof checking process
But even first proof-of-concept implementation shows our approach is viable

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 12/14



Future Work

Improve performance and reliability:
Cutting planes derivations instead of reverse unit propagations [VDB22]
Backwards checking/trimming for verification (as in DRAT-trim [HHW13a])
Fully formally verified proof checking (work in progress [BMM+23])

Extend proof logging further:
PB-to-CNF translations with odd-even mergesort & bitonic sorting networks [Bat68]
All of MaxSAT solving and (linear) pseudo-Boolean optimization
Mixed integer linear programming
Automated planning
. . .

We’re hiring! Talk to me to join the proof logging revolution! ,

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 13/14



Future Work

Improve performance and reliability:
Cutting planes derivations instead of reverse unit propagations [VDB22]
Backwards checking/trimming for verification (as in DRAT-trim [HHW13a])
Fully formally verified proof checking (work in progress [BMM+23])

Extend proof logging further:
PB-to-CNF translations with odd-even mergesort & bitonic sorting networks [Bat68]
All of MaxSAT solving and (linear) pseudo-Boolean optimization
Mixed integer linear programming
Automated planning
. . .

We’re hiring! Talk to me to join the proof logging revolution! ,

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 13/14



Take-Home Message
This work:

General approach for certifying many different PB-to-CNF translations
End-to-end verification for SAT-based pseudo-Boolean solving

VeriPB provides unified proof logging method for for state-of-the-art solvers in
Boolean satisfiability (SAT) including advanced techniques [GN21, BGMN23]
SAT-based optimization (MaxSAT) [VDB22, BBN+23]
SAT-based pseudo-Boolean solving [this work]
Constraint programming [EGMN20, GMN22, MM23]
Subgraph solving [GMN20, GMM+20]

Action point: What can VeriPB do for you? ,

Thank you for your attention!
Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 14/14



Take-Home Message
This work:

General approach for certifying many different PB-to-CNF translations
End-to-end verification for SAT-based pseudo-Boolean solving

VeriPB provides unified proof logging method for for state-of-the-art solvers in
Boolean satisfiability (SAT) including advanced techniques [GN21, BGMN23]
SAT-based optimization (MaxSAT) [VDB22, BBN+23]
SAT-based pseudo-Boolean solving [this work]
Constraint programming [EGMN20, GMN22, MM23]
Subgraph solving [GMN20, GMM+20]

Action point: What can VeriPB do for you? ,

Thank you for your attention!
Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 14/14



Take-Home Message
This work:

General approach for certifying many different PB-to-CNF translations
End-to-end verification for SAT-based pseudo-Boolean solving

VeriPB provides unified proof logging method for for state-of-the-art solvers in
Boolean satisfiability (SAT) including advanced techniques [GN21, BGMN23]
SAT-based optimization (MaxSAT) [VDB22, BBN+23]
SAT-based pseudo-Boolean solving [this work]
Constraint programming [EGMN20, GMN22, MM23]
Subgraph solving [GMN20, GMM+20]

Action point: What can VeriPB do for you? ,

Thank you for your attention!
Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 14/14



Take-Home Message
This work:

General approach for certifying many different PB-to-CNF translations
End-to-end verification for SAT-based pseudo-Boolean solving

VeriPB provides unified proof logging method for for state-of-the-art solvers in
Boolean satisfiability (SAT) including advanced techniques [GN21, BGMN23]
SAT-based optimization (MaxSAT) [VDB22, BBN+23]
SAT-based pseudo-Boolean solving [this work]
Constraint programming [EGMN20, GMN22, MM23]
Subgraph solving [GMN20, GMM+20]

Action point: What can VeriPB do for you? ,

Thank you for your attention!
Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 14/14



References I

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of the Spring Joint Computer
Conference of the American Federation of Information Processing Societies (AFIPS ’68), volume 32, pages
307–314, April 1968.

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of Boolean cardinality constraints. In
Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming
(CP ’03), volume 2833 of Lecture Notes in Computer Science, pages 108–122. Springer, September 2003.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified core-guided
MaxSAT solving. In Proceedings of the 29th International Conference on Automated Deduction (CADE-29),
July 2023. To appear.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and dominance
breaking for combinatorial optimisation. Journal of Artificial Intelligence Research, 77:1539–1589, August
2023. Preliminary version in AAAI ’22.

[BMM+23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and Yong Kiam Tan.
Documentation of VeriPB and CakePB for the SAT competition 2023. Available at
https://satcompetition.github.io/2023/checkers.html, March 2023.

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 15/14

https://satcompetition.github.io/2023/checkers.html


References II

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences using
pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),
pages 1486–1494, February 2020.

[EN18] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving. In
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18), pages
1291–1299, July 2018.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability,
Boolean Modeling and Computation, 2(1-4):1–26, March 2006.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James Trimble.
Certifying solvers for clique and maximum common (connected) subgraph problems. In Proceedings of the
26th International Conference on Principles and Practice of Constraint Programming (CP ’20), volume 12333
of Lecture Notes in Computer Science, pages 338–357. Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting planes:
Solving with certified solutions. In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 16/14



References III

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming solver. In
Proceedings of the 28th International Conference on Principles and Practice of Constraint Programming
(CP ’22), volume 235 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:18, August
2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean proofs. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777, February
2021.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs. In
Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design
(FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended resolution.
In Proceedings of the 24th International Conference on Automated Deduction (CADE-24), volume 7898 of
Lecture Notes in Computer Science, pages 345–359. Springer, June 2013.

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 17/14



References IV

[JMM15] Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for pseudo-Boolean
constraints. In Proceedings of the 21st International Conference on Principles and Practice of Constraint
Programming (CP ’15), volume 9255 of Lecture Notes in Computer Science, pages 200–209. Springer,
August-September 2015.

[LP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling
and Computation, 7:59–64, July 2010.

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In Proceedings of
the 29th International Conference on Principles and Practice of Constraint Programming (CP ’23), August
2023. To appear.

[MML14] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In
Proceedings of the 17th International Conference on Theory and Applications of Satisfiability Testing
(SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages 438–445. Springer, July 2014.

[Sin05] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In Proceedings of the
11th International Conference on Principles and Practice of Constraint Programming (CP ’05), volume 3709
of Lecture Notes in Computer Science, pages 827–831. Springer, October 2005.

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 18/14



References V

[SN15] Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint in band form and
related techniques for PB-solvers. IEICE Transactions on Information and Systems, 98-D(6):1121–1127, June
2015.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver. In
Proceedings of the 16th International Conference on Logic Programming and Non-monotonic Reasoning
(LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442. Springer, September
2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In Proceedings of the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 19/14


	Brief IJCAI 2023 talk
	Appendix

