
Certified CNF Translations for Pseudo-Boolean Solving

Jakob Nordström

University of Copenhagen
and Lund University

32nd International Joint Conference
on Artificial Intelligence

Macau, China
August 19–25, 2023

SAT ’22 paper joint with Stephan Gocht, Ruben Martins, and Andy Oertel

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 1/14



Pseudo-Boolean (PB) Solving

0–1 integer linear
program:

pseudo-Boolean
formula:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

Pseudo-Boolean solver Result:
feasible/infeasibleResult:

SAT/UNSAT

Input: Pseudo-Boolean formula (a.k.a. 0–1 integer linear program)
▶ Collection of 0–1 integer linear constraints

Conflict-driven pseudo-Boolean solvers:
▶ Native: Sat4j [LP10], RoundingSat [EN18]
▶ SAT-based: MiniSat+ [ES06], Open-WBO [MML14], NaPS [SN15]
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Certifying SAT Solver Results with Proof Logging

SAT solverInput Result

Proof

Proof checker Verification
of result
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Certifying Pseudo-Boolean Solver Results with Proof Logging?

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation SAT solver

DRAT
checker

Verification
of result

CNF formula

✕

✕

Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]
PB-to-CNF translation uncertified!

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 4/14



Certifying Pseudo-Boolean Solver Results with Proof Logging?

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation SAT solver

DRAT
checker

Verification
of result

CNF formula

DRAT proof/
Solution

✕

✕

Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]
PB-to-CNF translation uncertified!

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 4/14



Certifying Pseudo-Boolean Solver Results with Proof Logging?

0–1 integer linear
program:

0–1 integer linear
program:

x1 + x2 + x3 ≥ 2
x2 + x3 + x4 ≥ 2

x1 + 2x2 + 2x3 + x4 ≥ 3

SAT-based pseudo-Boolean solver

Result:
feasible/infeasibleResult:
feasible/infeasible

PB-to-CNF
translation SAT solver

DRAT
checker

Verification
of result

CNF formula

DRAT proof/
Solution

✕

✕

Correctness of SAT solver result can be certified [HHW13a, HHW13b, WHH14]
PB-to-CNF translation uncertified!

Jakob Nordström (UCPH & LU) Certified CNF Translations for Pseudo-Boolean Solving IJCAI ’23 4/14



Example Pseudo-Boolean-to-CNF Translation

ℓ1 + ℓ2 + ℓ3 ≥ 2

Meaning of si,j-variable:
si,j true ⇔ ℓ1 + . . . + ℓi ≥ j

𝑠𝑖−1, 𝑗

𝑠𝑖−1, 𝑗−1

ℓ𝑖

𝑠𝑖, 𝑗

&

≥ 1

ℓ1 ∨ s1,1 ℓ2 ∨ s1,1 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,3

ℓ1 ∨ s1,1 ℓ2 ∨ s2,2 ℓ3 ∨ s2,1 ∨ s3,2 ℓ3 ∨ s3,3

ℓ2 ∨ s2,1 s1,1 ∨ s2,2 s2,2 ∨ s3,2 s2,2 ∨ s3,3

s1,1 ∨ s2,1 ℓ3 ∨ s3,1 ℓ3 ∨ s2,2 ∨ s3,2

∨

s3,2

ℓ2 ∨ s1,1 ∨ s2,1 s2,1 ∨ s3,1 s2,1 ∨ s3,2
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Pseudo-Boolean Proof Logging with VeriPB

Inspired by SAT proof logging, but operates on 0–1 linear constraints
Supports efficient proof logging for

▶ SAT solving — including advanced techniques previously beyond efficient proof logging like
⋆ Gaussian elimination [GN21]
⋆ Symmetry breaking [BGMN23]

▶ SAT-based optimization (MaxSAT) approaches like
⋆ Model-improving search [VDB22]
⋆ Core-guided search [BBN+23]

▶ Subgraph problems [GMN20, GMM+20]
▶ Constraint programming [EGMN20, GMN22, MM23]

This work:
Proof logging for translating pseudo-Boolean constraints to CNF
General framework to certify many different encodings
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End-to-End Verification for Pseudo-Boolean Solving

0–1 integer linear
program

SAT-based pseudo-Boolean solver

Result:
feasible/infeasible

PB-to-CNF
translation SAT solver

VeriPB
checker

Verification
of result

CNF formula

DRAT proof/
solution

PB proof
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All the Technical Details on One Slide (or Not)
How pretty much all PB-to-CNF translations work:

1 Design circuit evaluating left-hand side of 0–1 integer linear constraint
2 Encode circuit to CNF using Tseitin translation (one new variable per circuit wire)
3 Enforce that circuit output says that the constraint is true

Important:
We don’t get to choose the translation to CNF clauses — the solver does
We should help solver print a VeriPB proof that clauses follow from the PB constraint

We solve this task by
1 Understanding the circuit design
2 Deriving CNF encoding of circuit (easy)
3 Proving circuit output is true (tricky, but using pseudo-Boolean reasoning really helps)
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Experimental Evaluation

Certified translations for CNF encodings with VeritasPBLib1

▶ Sequential counter [Sin05]
▶ Totalizer [BB03]
▶ Generalized totalizer [JMM15]
▶ Adder network [ES06]

Proofs verified by proof checker VeriPB2

Formulas solved with fork of Kissat3 outputting VeriPB proofs
Benchmarks from PB 2016 Evaluation4 in 3 categories

▶ Only cardinality constraints (sequential counter, totalizer)
▶ Only general 0-1 ILP constraints (generalized totalizer, adder network)
▶ Mixed cardinality & general 0-1 ILP constraints (sequential counter + adder network)

1https://github.com/forge-lab/VeritasPBLib
2https://gitlab.com/MIAOresearch/software/VeriPB
3https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork
4http://www.cril.univ-artois.fr/PB16/
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CNF Size vs Proof Size in KiB
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Nice scaling for proof size in terms of original CNF formula size
Except for some sequential encoding cases (which is not such a great encoding anyway)
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Translation Time vs Proof Checking Time in Seconds
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Translation fast — only has to generate clauses and proof
Proof checking slower — has to verify full proof
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Solving Time vs Proof Checking Time in Seconds
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Room for improvement of end-to-end proof checking process
But even first proof-of-concept implementation shows our approach is viable
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Future Work

Improve performance and reliability:
Cutting planes derivations instead of reverse unit propagations [VDB22]
Backwards checking/trimming for verification (as in DRAT-trim [HHW13a])
Fully formally verified proof checking (work in progress [BMM+23])

Extend proof logging further:
PB-to-CNF translations with odd-even mergesort & bitonic sorting networks [Bat68]
All of MaxSAT solving and (linear) pseudo-Boolean optimization
Mixed integer linear programming
Automated planning
. . .

We’re hiring! Talk to me to join the proof logging revolution! ,
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Take-Home Message
This work:

General approach for certifying many different PB-to-CNF translations
End-to-end verification for SAT-based pseudo-Boolean solving

VeriPB provides unified proof logging method for for state-of-the-art solvers in
Boolean satisfiability (SAT) including advanced techniques [GN21, BGMN23]
SAT-based optimization (MaxSAT) [VDB22, BBN+23]
SAT-based pseudo-Boolean solving [this work]
Constraint programming [EGMN20, GMN22, MM23]
Subgraph solving [GMN20, GMM+20]

Action point: What can VeriPB do for you? ,

Thank you for your attention!
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