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The Success of Combinatorial Solving (and the Dirty Little Secret)

Astounding progress last couple of decades on combinatorial solvers for, e.g.:
Boolean satisfiability (SAT) solving and optimization [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

Even get feasibility of solutions wrong (though this should be straightforward!)

And how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)
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What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 4/36



Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 4/36



Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 4/36



Proof Logging with Certifying Solvers: Workflow

Proof
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Checker
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Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?
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This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Explore potential connections with more challenging settings such as SMT,

first-order logic, . . .
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The Sales Pitch For Proof Logging

1 Certifies correctness of computed results
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Provides debugging support during software development

[EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability
7 Serves as stepping stone towards explainability
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep proof language maximally simple
Reason about XOR constraints, CP propagators, symmetries, etc within language
Combine proof logging with formally verified proof checker
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Constraints

Proof consists of 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
(linear) pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or hopefully in future extensions
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
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Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Configuration (Slightly Simplified)

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging [but not used by solver]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 14/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A
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∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A
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Cutting Planes Toy Example

w + 2x + y ≥ 2

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d
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Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding such “redundant” constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∧ C)↾ω should follow from F ∧ ¬C either

1 “obviously” or
2 by explicitly presented derivation
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Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!
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Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}
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2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule (Continued)
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Suppose now that D ≠ ∅
Same inductive proof as before, but also nested forward induction over derivation
Or pick α satisfying C ∪ D and minimizing f and argue by contradiction

Further extensions:
Define dominance rule with respect to order independent of objective function
Switch between different orders in same proof
See [BGMN23] for details
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Three Pseudo-Boolean Proof Logging Vignettes

1 Advanced SAT solving techniques [GN21, BGMN23]

2 Graph solving (subgraph isomorphism) [GMN20, GMM+20]

3 Constraint programming [EGMN20, GMN22, MM23]
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Parity (XOR) Reasoning in SAT Solving
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]
DRAT proof logging like [PR16] too inefficient in
practice!
Could add XORs to language, but prefer to keep things
super-simple
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a, b to derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]
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Pseudo-Boolean Proof Logging Outlook
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Subgraph Isomorphism Solving
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The Subgraph Isomorphism Problem

Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )
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Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )
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Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 Strong correctness guarantees:

Even for buggy solver, a correct proof is always accepted
Even for formally verified solver that gets whacked by cosmic radiation/hardware
failure, wrong proof will always be rejected
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Subgraph Isomorphism as a Pseudo-Boolean Formula
Pattern graph P with V (P) = {a, b, c, . . .}
Target graph T with V (T ) = {u, v, w, . . .}
No loops (for simplicity)

Pseudo-Boolean encoding∑
v∈V (T )

xa7→v = 1 [every a maps somewhere]

∑
b∈V (P)

xb 7→u ≥
∣∣V (P)

∣∣ − 1 [mapping is one-to-one]

xa7→u +
∑

v∈N(u)
xb7→v ≥ 1 [edge (a, b) maps to edge (u, v)]
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Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

Sum up all constraints & divide by 3 to obtain
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Integer Variables in Constraint Programming (1/2)

How to deal with integer variables?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Doesn’t propagate much, but that isn’t a problem for proof logging
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Integer Variables in Constraint Programming (2/2)

We can mix binary and order encodings! Define linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging
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Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
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Constraint Programming

Table Constraints
Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table
Given table constraint

(A, B, C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e., t1 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t2 + a=1 + b=4 + c=4 ≥ 3 i.e., t2 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t3 + a=2 + b=2 + c=5 ≥ 3 i.e., t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 31/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Table Constraints
Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table
Given table constraint

(A, B, C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e., t1 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t2 + a=1 + b=4 + c=4 ≥ 3 i.e., t2 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t3 + a=2 + b=2 + c=5 ≥ 3 i.e., t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 31/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook
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A Constraint Programming Solver with Pseudo-Boolean Proof Logging
Proof-of-concept constraint programming solver at

https://github.com/ciaranm/glasgow-constraint-solver

Supports proof logging for global constraints including:
All-different
Integer linear inequality (including for very large domains)
Smart table and regular
Minimum / maximum of an array
Element (kind of array indexing)
Absolute value
(Hamiltonian) Circuit

Details in [EGMN20, GMN22, MM23]
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Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN23], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)
Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should allow way faster proof
checking — see latest version of CaDiCaL [CaD]
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Using VeriPB
Further Challenges

VeriPB Documentation

VeriPB tutorial at CP ’22 [BMN22]
video at youtu.be/s_5BIi4I22w

updated slides for IJCAI ’23 tutorial [BMN23]

Description of VeriPB and CakePB [BMM+23] for SAT 2023 competition
Available at satcompetition.github.io/2023/checkers.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23,
BGMN23, MM23]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB
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Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Model counting
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21, DEGH23])
Satisfiability modulo theories (SMT) solving (work on cvc5, Z3, . . . [BBC+23] )

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,
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Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 36/36



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 36/36



References I
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