
A Unified Proof System for Discrete Combinatorial Problems?

Jakob Nordström

University of Copenhagen and Lund University

Dagstuhl Seminar 23471
“The Next Generation of Deduction Systems:

From Composition to Compositionality”
November 24, 2023

Based on joint work with Bart Bogaerts, Stephan Gocht,
Ciaran McCreesh, Magnus O. Myreen, Andy Oertel, and Yong Kiam Tan

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 1/36



A Unified Proof System for Discrete Combinatorial Problems?

Jakob Nordström

University of Copenhagen and Lund University

Dagstuhl Seminar 23471
“The Next Generation of Deduction Systems:

From Composition to Compositionality”
November 24, 2023

Based on joint work with Bart Bogaerts, Stephan Gocht,
Ciaran McCreesh, Magnus O. Myreen, Andy Oertel, and Yong Kiam Tan

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 1/36



The Success of Combinatorial Solving (and the Dirty Little Secret)

Astounding progress last couple of decades on combinatorial solvers for, e.g.:
Boolean satisfiability (SAT) solving and optimization [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

Even get feasibility of solutions wrong (though this should be straightforward!)

And how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 2/36



What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 3/36



What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 3/36



What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Progress using fuzzing and delta debugging [BB09, BLB10, KB22, NPB22, PB23]
But inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by adding code so that it outputs

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 3/36



Proof Logging with Certifying Solvers: Workflow

Checker

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 4/36



Proof Logging with Certifying Solvers: Workflow

CheckerProof

Input AnswerSolver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 4/36



Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 4/36



Proof Logging with Certifying Solvers: Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 4/36



Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 5/36



Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 5/36



Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 5/36



Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 5/36



Proof Logging Desiderata

Proof

Input AnswerSolver

Checker
✓ / ✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be (almost) trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 5/36



This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Explore potential connections with more challenging settings such as SMT,

first-order logic, . . .

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 6/36

https://gitlab.com/MIAOresearch/software/VeriPB


This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Explore potential connections with more challenging settings such as SMT,

first-order logic, . . .

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 6/36

https://gitlab.com/MIAOresearch/software/VeriPB


This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Explore potential connections with more challenging settings such as SMT,

first-order logic, . . .

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 6/36

https://gitlab.com/MIAOresearch/software/VeriPB


This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN23]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Explore potential connections with more challenging settings such as SMT,

first-order logic, . . .

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 6/36

https://gitlab.com/MIAOresearch/software/VeriPB


The Sales Pitch For Proof Logging

1 Certifies correctness of computed results
2 Detects errors even if due to compiler bugs, hardware failures, or cosmic rays
3 Provides debugging support during software development

[EG21, GMM+20, KM21, BBN+23]
4 Facilitates performance analysis
5 Helps identify potential for further improvements
6 Enables auditability
7 Serves as stepping stone towards explainability

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 7/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep proof language maximally simple
Reason about XOR constraints, CP propagators, symmetries, etc within language
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 8/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep proof language maximally simple
Reason about XOR constraints, CP propagators, symmetries, etc within language
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 8/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Design Principles for Proof Logging
Proof logging implementation

Don’t change solver
Just add proof logging statements (plus some book-keeping) to solver code

Performance goals
Proof logging overhead small constant fraction (⪅ 10%)
Proof checking time within constant factor of solving time (current aim ⪅ ×10)

Proof system
Keep proof language maximally simple
Reason about XOR constraints, CP propagators, symmetries, etc within language
Combine proof logging with formally verified proof checker

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 8/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Constraints

Proof consists of 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 9/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Constraints

Proof consists of 0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 9/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 10/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
(linear) pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or hopefully in future extensions

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 11/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
(linear) pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently

, Real Soon Now™, or hopefully in future extensions

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 11/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
(linear) pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™

, or hopefully in future extensions

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 11/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
(linear) pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or hopefully in future extensions

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 11/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 12/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 12/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 12/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 12/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging [basically: add print statements to solver code]
Otherwise

do trusted or verified translation to 0-1 ILP
do proof logging for 0-1 ILP formulation [but solver still works with original input]

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 12/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 13/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 13/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Proof Logging with Formally Verified Checking: Full Workflow

Proof

Encoded input

Input AnswerSolver

Checker
✓ / ✗

Formally verified checker

Elaborated proof

✓ / ✗

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 13/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

VeriPB Proof Configuration (Slightly Simplified)

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging [but not used by solver]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 14/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 15/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 15/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 15/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 15/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 15/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 15/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2z + 2z ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y + 2 ≥ 9

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 2 1

3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Cutting Planes Toy Example

w + 2x + y ≥ 2
Multiply by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Multiply by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Divide by 3
w + 2x + 2y ≥ 3

By naming constraints by integers and literal axioms by the literal involved as
Constraint 1 .= 2x + y + w ≥ 2
Constraint 2 .= 2x + 4y + 2z + w ≥ 5

∼z .= z ≥ 0

such a calculation is written in the proof log in reverse Polish notation as
pol 1 2 * 2 + ∼z 2 * + 3 d

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 16/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding such “redundant” constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∧ C)↾ω should follow from F ∧ ¬C either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 17/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding such “redundant” constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∧ C)↾ω should follow from F ∧ ¬C either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 17/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding such “redundant” constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∧ C)↾ω should follow from F ∧ ¬C either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 17/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance-Based Strengthening
C is redundant with respect to F if F and F ∧ C are equisatisfiable
Want to allow adding such “redundant” constraints

Redundance-based strengthening ([BT19, GN21], inspired by [JHB12])
C is redundant with respect to F if and only if there is a substitution ω (mapping
variables to truth values or literals), called a witness, for which

F ∧ ¬C |= (F ∧ C)↾ω

Proof sketch for interesting direction: If α satisfies F but falsifies C, then α ◦ ω
satisfies F ∧ C

In a proof, the implication needs to be efficiently verifiable — every
D ∈ (F ∧ C)↾ω should follow from F ∧ ¬C either

1 “obviously” or
2 by explicitly presented derivation

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 17/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 18/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 18/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 18/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Redundance and Dominance Rules in VeriPB (Slightly Simplified)
Redundance-based strengthening, optimization version [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f}

Can be more aggressive if witness ω strictly improves solution

Dominance-based strengthening [BGMN23]
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Applying ω should strictly decrease f

If so, don’t need to show that (D ∪ {C})↾ω implied!
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 18/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Why is this sound? Let D = ∅ for simplicity
1 Suppose α satisfies C but falsifies C (i.e., satisfies ¬C)
2 Then α ◦ ω satisfies C and f(α ◦ ω) < f(α)
3 If α ◦ ω satisfies C, we’re done
4 Otherwise (α ◦ ω) ◦ ω satisfies C and f

(
(α ◦ ω) ◦ ω

)
< f

(
α ◦ ω

)
5 If (α ◦ ω) ◦ ω satisfies C, we’re done
6 Otherwise

(
(α ◦ ω) ◦ ω

)
◦ ω satisfies C and f

(
((α ◦ ω) ◦ ω) ◦ ω

)
< f

(
(α ◦ ω) ◦ ω

)
7 . . .
8 Can’t go on forever, so finally reach α′ satisfying C ∪ {C}

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 19/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule (Continued)
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Suppose now that D ≠ ∅
Same inductive proof as before, but also nested forward induction over derivation
Or pick α satisfying C ∪ D and minimizing f and argue by contradiction

Further extensions:
Define dominance rule with respect to order independent of objective function
Switch between different orders in same proof
See [BGMN23] for details

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 20/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule (Continued)
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Suppose now that D ≠ ∅
Same inductive proof as before, but also nested forward induction over derivation
Or pick α satisfying C ∪ D and minimizing f and argue by contradiction

Further extensions:
Define dominance rule with respect to order independent of objective function
Switch between different orders in same proof
See [BGMN23] for details

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 20/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Proof Logging Principles and Goals
Pseudo-Boolean Reasoning with the Cutting Planes Method
Strengthening Rules

Soundness of Dominance Rule (Continued)
Dominance-based strengthening
Add constraint C to derived set D if exists witness substitution ω such that

C ∪ D ∪ {¬C} |= C↾ω ∪ {f↾ω < f}

Suppose now that D ≠ ∅
Same inductive proof as before, but also nested forward induction over derivation
Or pick α satisfying C ∪ D and minimizing f and argue by contradiction

Further extensions:
Define dominance rule with respect to order independent of objective function
Switch between different orders in same proof
See [BGMN23] for details

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 20/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Three Pseudo-Boolean Proof Logging Vignettes

1 Advanced SAT solving techniques [GN21, BGMN23]

2 Graph solving (subgraph isomorphism) [GMN20, GMM+20]

3 Constraint programming [EGMN20, GMN22, MM23]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 21/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Parity (XOR) Reasoning in SAT Solving
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]
DRAT proof logging like [PR16] too inefficient in
practice!
Could add XORs to language, but prefer to keep things
super-simple

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 22/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Parity (XOR) Reasoning in SAT Solving
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]
DRAT proof logging like [PR16] too inefficient in
practice!
Could add XORs to language, but prefer to keep things
super-simple

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 22/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Parity (XOR) Reasoning in SAT Solving
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]
DRAT proof logging like [PR16] too inefficient in
practice!
Could add XORs to language, but prefer to keep things
super-simple

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 22/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Parity (XOR) Reasoning in SAT Solving
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]
DRAT proof logging like [PR16] too inefficient in
practice!
Could add XORs to language, but prefer to keep things
super-simple

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 22/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Parity (XOR) Reasoning in SAT Solving
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]
DRAT proof logging like [PR16] too inefficient in
practice!
Could add XORs to language, but prefer to keep things
super-simple

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 22/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Parity (XOR) Reasoning in SAT Solving
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

This is just parity reasoning:

x + y + z = 1 (mod 2)
y + z + w = 1 (mod 2)

imply
x + w = 0 (mod 2)

Exponentially hard for CDCL [Urq87]
But used in CryptoMiniSat [Cry]
DRAT proof logging like [PR16] too inefficient in
practice!
Could add XORs to language, but prefer to keep things
super-simple

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 22/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a, b to derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 23/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a, b to derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 23/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a, b to derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 23/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a, b to derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 23/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for XOR Reasoning
Given clauses

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

x ∨ y ∨ z

and
y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

y ∨ z ∨ w

want to derive
x ∨ w

x ∨ w

Use redundance rule with fresh variables a, b to derive

x + y + z + 2a = 3
y + z + w + 2b = 3

(“=” syntactic sugar for “≥” plus “≤”)
Add to get

x + w + 2y + 2z + 2a + 2b = 6

From this can extract

x + w ≥ 1
x + w ≥ 1

VeriPB can certify XOR reasoning [GN21]
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 23/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 24/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 24/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0

yj−1 ∨ xj ∨ σ(xj)
yj ∨ yj−1

yj ∨ σ(xj) ∨ xj

yj ∨ yj−1 ∨ xj

yj ∨ yj−1 ∨ σ(xj)

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 24/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0 ≥ 1 yj + σ(xj) + xj ≥ 1

yj−1 + xj + σ(xj) ≥ 1 yj + yj−1 + xj ≥ 1
yj + yj−1 ≥ 1 yj + yj−1 + σ(xj) ≥ 1

VeriPB can certify fully general SAT symmetry breaking [BGMN23]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 24/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Symmetry Breaking in SAT Solving
1 Pretend to solve optimisation problem minimizing f

.=
∑n

i=1 2n−i · xi

(search for lexicographically smallest assignment satisfying formula)
2 Derive (for proof log only) pseudo-Boolean version of lex-leader constraint

f ≤ f↾σ
.=

n∑
i=1

2n−i · (σ(xi) − xi) ≥ 0

3 Derive symmetry breaking clauses from this PB constraint:
y0 ≥ 1 yj + σ(xj) + xj ≥ 1

yj−1 + xj + σ(xj) ≥ 1 yj + yj−1 + xj ≥ 1
yj + yj−1 ≥ 1 yj + yj−1 + σ(xj) ≥ 1

VeriPB can certify fully general SAT symmetry breaking [BGMN23]
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 24/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

The Subgraph Isomorphism Problem

Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 25/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

The Subgraph Isomorphism Problem

Input
Pattern graph P with vertices V (P) = {a, b, c, . . .}
Target graph T with vertices V (T ) = {u, v, w, . . .}

Task
Find all subgraph isomorphisms φ : V (P) → V (T )
I.e., if

1 φ(a) = u
2 φ(b) = v
3 (a, b) ∈ E(P)

then must have (u, v) ∈ E(T )

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 25/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 Strong correctness guarantees:

Even for buggy solver, a correct proof is always accepted
Even for formally verified solver that gets whacked by cosmic radiation/hardware
failure, wrong proof will always be rejected

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 26/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 Strong correctness guarantees:

Even for buggy solver, a correct proof is always accepted
Even for formally verified solver that gets whacked by cosmic radiation/hardware
failure, wrong proof will always be rejected

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 26/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 Strong correctness guarantees:

Even for buggy solver, a correct proof is always accepted
Even for formally verified solver that gets whacked by cosmic radiation/hardware
failure, wrong proof will always be rejected

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 26/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 Strong correctness guarantees:

Even for buggy solver, a correct proof is always accepted
Even for formally verified solver that gets whacked by cosmic radiation/hardware
failure, wrong proof will always be rejected

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 26/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging for Subgraph Isomorphism Solving

All reasoning steps in Glasgow Subgraph Solver [ADH+19, GSS] can be formalized
efficiently in the cutting planes proof system [GMN20]

Means that
1 Solver can justify each step by writing local formal derivation
2 Local derivations can be chained into global correctness proof
3 Proof checkable by stand-alone verifier that knows nothing about graphs
4 Strong correctness guarantees:

Even for buggy solver, a correct proof is always accepted
Even for formally verified solver that gets whacked by cosmic radiation/hardware
failure, wrong proof will always be rejected

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 26/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Subgraph Isomorphism as a Pseudo-Boolean Formula
Pattern graph P with V (P) = {a, b, c, . . .}
Target graph T with V (T ) = {u, v, w, . . .}
No loops (for simplicity)

Pseudo-Boolean encoding∑
v∈V (T )

xa7→v = 1 [every a maps somewhere]

∑
b∈V (P)

xb 7→u ≥
∣∣V (P)

∣∣ − 1 [mapping is one-to-one]

xa7→u +
∑

v∈N(u)
xb7→v ≥ 1 [edge (a, b) maps to edge (u, v)]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 27/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Subgraph Isomorphism as a Pseudo-Boolean Formula
Pattern graph P with V (P) = {a, b, c, . . .}
Target graph T with V (T ) = {u, v, w, . . .}
No loops (for simplicity)

Pseudo-Boolean encoding∑
v∈V (T )

xa7→v = 1 [every a maps somewhere]

∑
b∈V (P)

xb 7→u ≥
∣∣V (P)

∣∣ − 1 [mapping is one-to-one]

xa7→u +
∑

v∈N(u)
xb7→v ≥ 1 [edge (a, b) maps to edge (u, v)]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 27/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa7→u + xb7→v + xb7→w ≥ 1
xa7→u + xc7→v + xc7→w ≥ 1
xa 7→u + xd7→v + xd7→w ≥ 1

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa7→u + xb7→v + xb7→w ≥ 1
xa7→u + xc7→v + xc7→w ≥ 1
xa 7→u + xd7→v + xd7→w ≥ 1

xa7→v + xb 7→v + xc7→v + xd7→v + xe 7→v ≥ 4
xa7→w + xb 7→w + xc 7→w + xd7→w + xe 7→w ≥ 4

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa7→u + xb7→v + xb7→w ≥ 1
xa7→u + xc7→v + xc7→w ≥ 1
xa 7→u + xd7→v + xd7→w ≥ 1

xa7→v + xb 7→v + xc7→v + xd7→v + xe 7→v ≥ 4
xa7→w + xb 7→w + xc 7→w + xd7→w + xe 7→w ≥ 4

xa7→v ≥ 0
xa7→w ≥ 0
xe 7→v ≥ 0
xe 7→w ≥ 0

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa7→u + xb7→v + xb7→w ≥ 1
xa7→u + xc7→v + xc7→w ≥ 1
xa 7→u + xd7→v + xd7→w ≥ 1

xa7→v + xb 7→v + xc7→v + xd7→v + xe 7→v ≥ 4
xa7→w + xb 7→w + xc 7→w + xd7→w + xe 7→w ≥ 4

xa7→v ≥ 0
xa7→w ≥ 0
xe 7→v ≥ 0
xe 7→w ≥ 0

Sum up all constraints & divide by 3 to obtain

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa7→u + xb7→v + xb7→w ≥ 1
xa7→u + xc7→v + xc7→w ≥ 1
xa7→u + xd7→v + xd7→w ≥ 1

xa7→v + xb 7→v + xc 7→v + xd7→v + xe 7→v ≥ 4
xa 7→w + xb 7→w + xc7→w + xd7→w + xe 7→w ≥ 4

xa 7→v ≥ 0
xa7→w ≥ 0
xe 7→v ≥ 0
xe 7→w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa7→u + 10 ≥ 11

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa7→u + xb7→v + xb7→w ≥ 1
xa7→u + xc7→v + xc7→w ≥ 1
xa7→u + xd7→v + xd7→w ≥ 1

xa7→v + xb 7→v + xc 7→v + xd7→v + xe 7→v ≥ 4
xa 7→w + xb 7→w + xc7→w + xd7→w + xe 7→w ≥ 4

xa 7→v ≥ 0
xa7→w ≥ 0
xe 7→v ≥ 0
xe 7→w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa7→u ≥ 1

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Pseudo-Boolean Proof Logging Example: Degree Preprocessing
a

b

c

d

e u

v

w

xa7→u + xb7→v + xb7→w ≥ 1
xa7→u + xc7→v + xc7→w ≥ 1
xa7→u + xd7→v + xd7→w ≥ 1

xa7→v + xb 7→v + xc 7→v + xd7→v + xe 7→v ≥ 4
xa 7→w + xb 7→w + xc7→w + xd7→w + xe 7→w ≥ 4

xa 7→v ≥ 0
xa7→w ≥ 0
xe 7→v ≥ 0
xe 7→w ≥ 0

Sum up all constraints & divide by 3 to obtain

3xa7→u ≥ 1
xa7→u ≥ 1

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 28/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Integer Variables in Constraint Programming (1/2)

How to deal with integer variables?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Doesn’t propagate much, but that isn’t a problem for proof logging

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 29/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Integer Variables in Constraint Programming (1/2)

How to deal with integer variables?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Doesn’t propagate much, but that isn’t a problem for proof logging

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 29/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Integer Variables in Constraint Programming (1/2)

How to deal with integer variables?
Given A ∈ {−3 . . . 9}, the direct encoding is:

a=−3 + a=−2 + a=−1 + a=0 + a=1 + a=2 + a=3

+ a=4 + a=5 + a=6 + a=7 + a=8 + a=9 = 1

This doesn’t work for large domains. . .
We can instead use a binary encoding:

−16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ −3 and
16aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 ≥ −9

Doesn’t propagate much, but that isn’t a problem for proof logging

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 29/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Integer Variables in Constraint Programming (2/2)

We can mix binary and order encodings! Define linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 30/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Integer Variables in Constraint Programming (2/2)

We can mix binary and order encodings! Define linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 30/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Integer Variables in Constraint Programming (2/2)

We can mix binary and order encodings! Define linear inequalities encoding

a≥4 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 4
a≥5 ⇔ −16aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 ≥ 5
a=4 ⇔ a≥4 ∧ a≥5

When creating a≥i, also introduce pseudo-Boolean constraints encoding

a≥i ⇒ a≥j and a≥h ⇒ a≥i

for the closest values j < i < h that already exist
We can do this:

Inside the pseudo-Boolean model where needed
Otherwise lazily during proof logging

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 30/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Table Constraints
Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table
Given table constraint

(A, B, C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e., t1 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t2 + a=1 + b=4 + c=4 ≥ 3 i.e., t2 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t3 + a=2 + b=2 + c=5 ≥ 3 i.e., t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 31/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

Table Constraints
Constraints can be specified extensionally as list of feasible tuples, called a table
Variable assignments must match some row in table
Given table constraint

(A, B, C) ∈ [(1, 2, 3), (1, 3, 4), (2, 2, 5)]

define

3t1 + a=1 + b=2 + c=3 ≥ 3 i.e., t1 ⇒ (a=1 ∧ b=2 ∧ c=3)
3t2 + a=1 + b=4 + c=4 ≥ 3 i.e., t2 ⇒ (a=1 ∧ b=4 ∧ c=4)
3t3 + a=2 + b=2 + c=5 ≥ 3 i.e., t3 ⇒ (a=2 ∧ b=2 ∧ c=5)

using tuple selector variables

t1 + t2 + t3 = 1

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 31/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Advanced SAT Solving
Subgraph Isomorphism Solving
Constraint Programming

A Constraint Programming Solver with Pseudo-Boolean Proof Logging
Proof-of-concept constraint programming solver at

https://github.com/ciaranm/glasgow-constraint-solver

Supports proof logging for global constraints including:
All-different
Integer linear inequality (including for very large domains)
Smart table and regular
Minimum / maximum of an array
Element (kind of array indexing)
Absolute value
(Hamiltonian) Circuit

Details in [EGMN20, GMN22, MM23]
Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 32/36

https://github.com/ciaranm/glasgow-constraint-solver


Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN23], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)
Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should allow way faster proof
checking — see latest version of CaDiCaL [CaD]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 33/36

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork


Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN23], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)
Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should allow way faster proof
checking — see latest version of CaDiCaL [CaD]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 33/36

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork


Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN23], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)
Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should allow way faster proof
checking — see latest version of CaDiCaL [CaD]

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 33/36

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork


Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

VeriPB Documentation

VeriPB tutorial at CP ’22 [BMN22]
video at youtu.be/s_5BIi4I22w

updated slides for IJCAI ’23 tutorial [BMN23]

Description of VeriPB and CakePB [BMM+23] for SAT 2023 competition
Available at satcompetition.github.io/2023/checkers.html

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, GMN22, GMNO22, VDB22, BBN+23,
BGMN23, MM23]

Lots of concrete example files at gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 34/36

youtu.be/s_5BIi4I22w
satcompetition.github.io/2023/checkers.html
gitlab.com/MIAOresearch/software/VeriPB


Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Model counting
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21, DEGH23])
Satisfiability modulo theories (SMT) solving (work on cvc5, Z3, . . . [BBC+23] )

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 35/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Model counting
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21, DEGH23])
Satisfiability modulo theories (SMT) solving (work on cvc5, Z3, . . . [BBC+23] )

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 35/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Model counting
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21, DEGH23])
Satisfiability modulo theories (SMT) solving (work on cvc5, Z3, . . . [BBC+23] )

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 35/36



Pseudo-Boolean Proof Logging Basics
Three Showcases

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Model counting
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21, DEGH23])
Satisfiability modulo theories (SMT) solving (work on cvc5, Z3, . . . [BBC+23] )

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 35/36



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 36/36



Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 36/36



References I

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An
introduction to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik, 53(6):287–293, December 2011.

[ADH+19] Blair Archibald, Fraser Dunlop, Ruth Hoffmann, Ciaran McCreesh, Patrick Prosser, and James
Trimble. Sequential and parallel solution-biased search for subgraph algorithms. In Proceedings of
the 16th International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR ’19), volume 11494 of Lecture Notes in Computer
Science, pages 20–38. Springer, June 2019.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference on
Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in
Computer Science, pages 727–736. Springer, August 2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization,
pages 449–481. Springer, 2013.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 37/36



References II

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean
optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.

[BB09] Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT solvers. In Proceedings of
the 7th International Workshop on Satisfiability Modulo Theories (SMT ’09), pages 1–5, August
2009.

[BBC+23] Haniel Barbosa, Clark Barrett, Byron Cook, Bruno Dutertre, Gereon Kremer, Hanna Lachnitt,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Cesare Tinelli,
and Yoni Zohar. Generating and exploiting automated reasoning proof certificates.
Communications of the ACM, 66(10):86––95, October 2023.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified
core-guided MaxSAT solving. In Proceedings of the 29th International Conference on Automated
Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages 1–22.
Springer, July 2023.

[BGMN23] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and
dominance breaking for combinatorial optimisation. Journal of Artificial Intelligence Research,
77:1539–1589, August 2023. Preliminary version in AAAI ’22.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 38/36



References III

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd
edition, February 2021.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT
and QBF solvers. In Proceedings of the 13th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science, pages
44–57. Springer, July 2010.

[BMM+23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. Documentation of VeriPB and CakePB for the SAT competition 2023. Available
at https://satcompetition.github.io/2023/checkers.html, March 2023.

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results:
Beyond satisfiability, and towards constraint programming. Tutorial at the 28th International
Conference on Principles and Practice of Constraint Programming. Slides available at
http://www.jakobnordstrom.se/presentations/, August 2022.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 39/36

https://satcompetition.github.io/2023/checkers.html
http://www.jakobnordstrom.se/presentations/


References IV

[BMN23] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Combinatorial solving with provably
correct results. Tutorial at the 32nd International Joint Conference on Artificial Intelligence. Slides
available at http://www.jakobnordstrom.se/presentations/, August 2023.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A
look back from the other side of the tipping point. Annals of Operations Research, 149(1):37–41,
February 2007.

[BT19] Samuel R. Buss and Neil Thapen. DRAT proofs, propagation redundancy, and extended
resolution. In Proceedings of the 22nd International Conference on Theory and Applications of
Satisfiability Testing (SAT ’19), volume 11628 of Lecture Notes in Computer Science, pages
71–89. Springer, July 2019.

[CaD] CaDiCaL. http://fmv.jku.at/cadical/.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 40/36

http://www.jakobnordstrom.se/presentations/
http://fmv.jku.at/cadical/


References V

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, June 2017.

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the 26th International
Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer
Science, pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound
approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

[CMS17] Lúıs Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution
proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in
Computer Science, pages 118–135. Springer, April 2017.

[Cry] CryptoMiniSat SAT solver. https://github.com/msoos/cryptominisat/.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 41/36

https://github.com/msoos/cryptominisat/


References VI

[DEGH23] Jasper van Doornmalen, Leon Eifler, Ambros Gleixner, and Christopher Hojny. A proof system for
certifying symmetry and optimality reasoning in integer programming. Technical Report
2311.03877, arXiv.org, November 2023.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer
programming. In Proceedings of the 22nd International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer Science,
pages 163–177. Springer, May 2021.

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pages 1486–1494, February 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble. Certifying solvers for clique and maximum common (connected) subgraph problems. In
Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, September 2020.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 42/36



References VII

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Proceedings of the 28th International Conference on Principles and Practice of
Constraint Programming (CP ’22), volume 235 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 25:1–25:18, August 2022.

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations
for pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean
proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages
3768–3777, February 2021.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 43/36



References VIII

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean
Reasoning. PhD thesis, Lund University, June 2022. Available at
https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation
at KTH Royal Institute of Technology. Slides available at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In
Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

[GSS] The Glasgow subgraph solver. https://github.com/ciaranm/glasgow-subgraph-solver.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 44/36

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf
https://github.com/ciaranm/glasgow-subgraph-solver


References IX

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Proceedings of the 24th International Conference on Automated Deduction
(CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June
2013.

[JHB12] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules. In Proceedings of the
6th International Joint Conference on Automated Reasoning (IJCAR ’12), volume 7364 of Lecture
Notes in Computer Science, pages 355–370. Springer, June 2012.

[KB22] Daniela Kaufmann and Armin Biere. Fuzzing and delta debugging and-inverter graph verification
tools. In Proceedings of the 16th International Conference on Tests and Proofs (TAP ’22), volume
13361 of Lecture Notes in Computer Science, pages 69–88. Springer, July 2022.

[KM21] Sonja Kraiczy and Ciaran McCreesh. Solving graph homomorphism and subgraph isomorphism
problems faster through clique neighbourhood constraints. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI ’21), pages 1396–1402, August 2021.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 45/36



References X

[MM23] Matthew McIlree and Ciaran McCreesh. Proof logging for smart extensional constraints. In
Proceedings of the 29th International Conference on Principles and Practice of Constraint
Programming (CP ’23), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 26:1–26:17, August 2023.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, May 2011.

[NPB22] Aina Niemetz, Mathias Preiner, and Clark W. Barrett. Murxla: A modular and highly extensible
API fuzzer for SMT solvers. In Proceedings of the 34th International Conference on Computer
Aided Verification (CAV ’22), volume 13372 of Lecture Notes in Computer Science, pages
92–106. Springer, August 2022.

[PB23] Tobias Paxian and Armin Biere. Uncovering and classifying bugs in MaxSAT solvers through
fuzzing and delta debugging. In Proceedings of the 14th International Workshop on Pragmatics of
SAT, volume 3545 of CEUR Workshop Proceedings, pages 59–71. CEUR-WS.org, July 2023.

[PR16] Tobias Philipp and Adrián Rebola-Pardo. DRAT proofs for XOR reasoning. In Proceedings of the
15th European Conference on Logics in Artificial Intelligence (JELIA ’16), volume 10021 of
Lecture Notes in Computer Science, pages 415–429. Springer, November 2016.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 46/36



References XI

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219, January
1987.

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver.
In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442.
Springer, September 2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) A Unified Proof System for Discrete Combinatorial Problems Dagstuhl Nov ’23 47/36


	Intro
	MainTalk
	Pseudo-Boolean Proof Logging Basics
	Proof Logging Principles and Goals
	Pseudo-Boolean Reasoning with the Cutting Planes Method
	Strengthening Rules 

	Three Showcases
	Advanced SAT Solving
	Subgraph Isomorphism Solving
	Constraint Programming

	Pseudo-Boolean Proof Logging Outlook
	Using VeriPB
	Further Challenges


	Conclusion
	Appendix

