
A One-Size-Fits-All Proof Logging System?

Jakob Nordström

University of Copenhagen
and Lund University

14th Pragmatics of SAT Workshop
Alghero, Italy
July 4, 2023

Joint work with Bart Bogaerts, Stephan Gocht, Ciaran McCreesh,
Magnus O. Myreen, Andy Oertel, and Yong Kiam Tan

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 1/29

The Success of Combinatorial Solving (and the Dirty Little Secret)

Astounding progress last couple of decades on combinatorial solvers for, e.g.:
Boolean satisfiability (SAT) solving and optimization [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

Even get feasibility of solutions wrong (though this should be straightforward!)

And how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 2/29

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 3/29

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 3/29

What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 3/29

Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 4/29

Proof Logging with Certifying Solvers: Workflow

Checker
Proof

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 4/29

Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 4/29

Proof Logging with Certifying Solvers: Workflow

Proof

Input Answer
Solver

Checker
✓/✗

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 4/29

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 5/29

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 5/29

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 5/29

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 5/29

Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 5/29

This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN22]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Solicit feedback

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 6/29

https://gitlab.com/MIAOresearch/software/VeriPB

This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN22]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Solicit feedback

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 6/29

https://gitlab.com/MIAOresearch/software/VeriPB

This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN22]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Solicit feedback

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 6/29

https://gitlab.com/MIAOresearch/software/VeriPB

This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN22]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Solicit feedback

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 6/29

https://gitlab.com/MIAOresearch/software/VeriPB

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 7/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 7/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 8/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or
hopefully sometime in the future

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 9/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently

, Real Soon Now™, or
hopefully sometime in the future

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 9/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™

, or
hopefully sometime in the future

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 9/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or
hopefully sometime in the future

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 9/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging
Otherwise

do trusted or verified translation to 0-1 ILP
provide proof logging for 0-1 ILP formulation

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments (even for SAT)
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 10/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging
Otherwise

do trusted or verified translation to 0-1 ILP
provide proof logging for 0-1 ILP formulation

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments (even for SAT)
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 10/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging
Otherwise

do trusted or verified translation to 0-1 ILP
provide proof logging for 0-1 ILP formulation

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments (even for SAT)
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 10/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging
Otherwise

do trusted or verified translation to 0-1 ILP
provide proof logging for 0-1 ILP formulation

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments (even for SAT)
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 10/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging
Otherwise

do trusted or verified translation to 0-1 ILP
provide proof logging for 0-1 ILP formulation

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments (even for SAT)
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 10/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

VeriPB Proof Structure

1 Preamble
Load input formula
Specify settings

2 Derivation section
Derivations of new constraints
Logging of solutions

3 Output section
Listing of constraints currently in database
Input to next stage (or for debugging)

4 Conclusions section
Specification of what was established

satisfiability / unsatisfiability
optimality
enumeration of solutions

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 11/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

VeriPB Proof Structure: Syntax

pseudo-Boolean proof version 2.0
f ⟨M ⟩
preserve ⟨var1 ⟩ ⟨var2 ⟩ ... ⟨varN ⟩
⟨derivation part⟩
output ⟨output part ⟩
conclusion ⟨conclusion part ⟩
end pseudo-Boolean proof

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 12/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

VeriPB Proof Configuration

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging

Order O
Pseudo-Boolean formula encoding
pre-order (reflexive and transitive)
Syntactic proof of properties required
Applied to specified variable set z⃗

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 13/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

VeriPB Proof Configuration

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging

Order O
Pseudo-Boolean formula encoding
pre-order (reflexive and transitive)
Syntactic proof of properties required
Applied to specified variable set z⃗

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 13/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 14/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 14/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 14/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 14/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 14/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 14/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y + 2z + 2z ≥ 9

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y + 2 ≥ 9

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 2 1

3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Cutting Planes Toy Example

w + 2x + y ≥ 2
Mul by 2

2w + 4x + 2y ≥ 4 w + 2x + 4y + 2z ≥ 5
Add

3w + 6x + 6y + 2z ≥ 9
z ≥ 0

Mul by 2
2z ≥ 0

Add
3w + 6x + 6y ≥ 7

Div by 3
w + 2x + 2y ≥ 3

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 15/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

More About VeriPB Proofs
Variables

start with a letter in A-Z or a-z

continue with characters in A-Z, a-z, 0-9, or square and curly brackets, hyphen,
underscore, and caret
contain at least two characters

Constraints
Are referred to by positive integers (constraint IDs)
Derivation rules and requirements
Come in two flavours

1 kernel format for formally verified proof checker
2 augmented format with convenience rules such as reverse unit propagation (RUP)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 16/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Strengthening Rules
Witness ω: substitution mapping variables to truth values or literals

Redundance-based strengthening (witness ω show how to “patch assignment”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗)

Dominance-based strengthening (witness ω “drives down potential”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗) ∪ ¬O(z⃗, z⃗↾ω)

Witness ω should be specified in proof log
Derivations should also be explicit, or be “obvious” to proof checker (like by RUP)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 17/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Strengthening Rules
Witness ω: substitution mapping variables to truth values or literals

Redundance-based strengthening (witness ω show how to “patch assignment”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗)

Dominance-based strengthening (witness ω “drives down potential”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗) ∪ ¬O(z⃗, z⃗↾ω)

Witness ω should be specified in proof log
Derivations should also be explicit, or be “obvious” to proof checker (like by RUP)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 17/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Strengthening Rules
Witness ω: substitution mapping variables to truth values or literals

Redundance-based strengthening (witness ω show how to “patch assignment”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗)

Dominance-based strengthening (witness ω “drives down potential”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗) ∪ ¬O(z⃗, z⃗↾ω)

Witness ω should be specified in proof log
Derivations should also be explicit, or be “obvious” to proof checker (like by RUP)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 17/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Checked and Unchecked Deletion

Important to allow deletions of constraints from database
But powerful strengthening rules create problems:

Unsatisfiable formulas can turn satisfiable
Satisfiable formulas can turn unsatisfiable(!)

Solution: distinguish between deletion from core set C and derived set D
(For SAT solvers, support generic delete command in augmented format that
translates to right type of deletion behind the scenes)
Deletion of constraint C is:

1 always OK from derived set D
2 OK from core set C only if C can be rederived from C \ {C} with redundance rule

(otherwise unchecked deletion — special conditions apply)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 18/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Checked and Unchecked Deletion

Important to allow deletions of constraints from database
But powerful strengthening rules create problems:

Unsatisfiable formulas can turn satisfiable
Satisfiable formulas can turn unsatisfiable(!)

Solution: distinguish between deletion from core set C and derived set D
(For SAT solvers, support generic delete command in augmented format that
translates to right type of deletion behind the scenes)
Deletion of constraint C is:

1 always OK from derived set D
2 OK from core set C only if C can be rederived from C \ {C} with redundance rule

(otherwise unchecked deletion — special conditions apply)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 18/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Checked and Unchecked Deletion

Important to allow deletions of constraints from database
But powerful strengthening rules create problems:

Unsatisfiable formulas can turn satisfiable
Satisfiable formulas can turn unsatisfiable(!)

Solution: distinguish between deletion from core set C and derived set D
(For SAT solvers, support generic delete command in augmented format that
translates to right type of deletion behind the scenes)
Deletion of constraint C is:

1 always OK from derived set D
2 OK from core set C only if C can be rederived from C \ {C} with redundance rule

(otherwise unchecked deletion — special conditions apply)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 18/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Checked and Unchecked Deletion

Important to allow deletions of constraints from database
But powerful strengthening rules create problems:

Unsatisfiable formulas can turn satisfiable
Satisfiable formulas can turn unsatisfiable(!)

Solution: distinguish between deletion from core set C and derived set D
(For SAT solvers, support generic delete command in augmented format that
translates to right type of deletion behind the scenes)
Deletion of constraint C is:

1 always OK from derived set D
2 OK from core set C only if C can be rederived from C \ {C} with redundance rule

(otherwise unchecked deletion — special conditions apply)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 18/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Conclusions for Decision Problems

NONE
Status is undetermined
SAT [: ⟨assignment ⟩]
Propagate given assignment w.r.t. database, then check against original formula
If no assignment given, then

solution should have been logged
no unchecked deletion must have occurred

UNSAT [: ⟨constraint ID ⟩]
Only valid if no solution has been logged
Check that specified constraint is contradictory (technically: negative slack)
If no constraint given, check that database unit propagates to contradiction

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 19/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Optimization Problems

Any solution α found is logged with soli “log solution and improve” command
α checked against current core set C
Objective-improving constraint ∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi) added to core set
(forces search for better solutions)

Note that
α need not be solution for original formula
but such solution can be reconstructed from the proof

Proof format supports not just optimality, but also non-tight upper and lower bounds

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 20/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Optimization Problems

Any solution α found is logged with soli “log solution and improve” command
α checked against current core set C
Objective-improving constraint ∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi) added to core set
(forces search for better solutions)

Note that
α need not be solution for original formula
but such solution can be reconstructed from the proof

Proof format supports not just optimality, but also non-tight upper and lower bounds

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 20/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Conclusions for Optimization Problems
NONE
No solution or lower bound found

BOUNDS ⟨LB ⟩ [: ⟨constraint ID ⟩] ⟨UB ⟩ [: ⟨assignment ⟩]
⟨LB⟩ and ⟨UB⟩ are integers or inf; optimality if ⟨LB⟩ = ⟨UB⟩
Lower bound
Constraint ⟨constraint ID⟩, if specified, should imply lower bound
Otherwise, f ≥ ⟨LB⟩ should be “obvious” to proof checker from current database
Upper bound
Propagate given assignment w.r.t. database, then check against original formula
If no assignment given, then

solution with value ⟨UB⟩ should have been logged
no unchecked deletion must have occurred

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 21/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Conclusions for Optimization Problems
NONE
No solution or lower bound found

BOUNDS ⟨LB ⟩ [: ⟨constraint ID ⟩] ⟨UB ⟩ [: ⟨assignment ⟩]
⟨LB⟩ and ⟨UB⟩ are integers or inf; optimality if ⟨LB⟩ = ⟨UB⟩
Lower bound
Constraint ⟨constraint ID⟩, if specified, should imply lower bound
Otherwise, f ≥ ⟨LB⟩ should be “obvious” to proof checker from current database
Upper bound
Propagate given assignment w.r.t. database, then check against original formula
If no assignment given, then

solution with value ⟨UB⟩ should have been logged
no unchecked deletion must have occurred

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 21/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Conclusions for Optimization Problems
NONE
No solution or lower bound found

BOUNDS ⟨LB ⟩ [: ⟨constraint ID ⟩] ⟨UB ⟩ [: ⟨assignment ⟩]
⟨LB⟩ and ⟨UB⟩ are integers or inf; optimality if ⟨LB⟩ = ⟨UB⟩
Lower bound
Constraint ⟨constraint ID⟩, if specified, should imply lower bound
Otherwise, f ≥ ⟨LB⟩ should be “obvious” to proof checker from current database
Upper bound
Propagate given assignment w.r.t. database, then check against original formula
If no assignment given, then

solution with value ⟨UB⟩ should have been logged
no unchecked deletion must have occurred

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 21/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Projected Model Enumeration and Preserved Variables

Command
preserve ⟨var1 ⟩ ⟨var2 ⟩ ... ⟨varN ⟩
in proof preamble (after loading formula) specifies set V of preserved variables
Preserved variables cannot appear in domain of any witness ω for strengthening rules
Any solution α found is logged with “log solution and exclude” solx command

α checked against current core set C
Solution-excluding constraint ∨

x∈V (x ̸= α(x)) added to core set
(forces search for other solutions)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 22/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Projected Model Enumeration and Preserved Variables

Command
preserve ⟨var1 ⟩ ⟨var2 ⟩ ... ⟨varN ⟩
in proof preamble (after loading formula) specifies set V of preserved variables
Preserved variables cannot appear in domain of any witness ω for strengthening rules
Any solution α found is logged with “log solution and exclude” solx command

α checked against current core set C
Solution-excluding constraint ∨

x∈V (x ̸= α(x)) added to core set
(forces search for other solutions)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 22/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Projected Model Enumeration and Preserved Variables

Command
preserve ⟨var1 ⟩ ⟨var2 ⟩ ... ⟨varN ⟩
in proof preamble (after loading formula) specifies set V of preserved variables
Preserved variables cannot appear in domain of any witness ω for strengthening rules
Any solution α found is logged with “log solution and exclude” solx command

α checked against current core set C
Solution-excluding constraint ∨

x∈V (x ̸= α(x)) added to core set
(forces search for other solutions)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 22/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Conclusions for Projected Model Enumeration Problems

NONE
No solution or contradiction found
ENUMERATION PARTIAL : ⟨N ⟩
The number of solx commands in the proof log is ⟨N⟩
No unchecked deletion must have occurred

ENUMERATION COMPLETE : ⟨N ⟩ [: ⟨constraint ID ⟩]
The list of solutions found and enumerated is complete
The number of solx commands in the proof log is ⟨N⟩
Check that specified constraint is contradictory (technically: negative slack)
If no constraint given, check that database unit propagates to contradiction
No unchecked deletion must have occurred

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 23/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Problem Reformulation and Output Section
NONE
No output
DERIVABLE
Any unsatisfiability / lower bound shown for output will be valid also for input
EQUI-SATISFIABLE
Input and output are equisatisfiable
true for decision problems with checked deletion
EQUI-OPTIMAL
Input and output have same optimal value
(or optimal solution was found and the output is unsatisfiable)
EQUI-ENUMERABLE
Input and output have the same number of projected solutions
(and no solutions have been logged)

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 24/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Objective Update

Objective function update command
obju ⟨constraint ID 1 ⟩ ⟨constraint ID 2 ⟩ : ⟨fnew⟩
changes objective function of (potentially reformulated) problem

Specifies two constraints in core set showing fold = fnew

fold ≤ fnew is implied by ⟨constraint ID 1⟩
fold ≥ fnew is implied by ⟨constraint ID 2⟩

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 25/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN22], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)

Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should be way faster to check
Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 26/29

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN22], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)

Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should be way faster to check
Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 26/29

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN22], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)

Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should be way faster to check
Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 26/29

https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

VeriPB Documentation

VeriPB tutorial [BMN22] (video at https://youtu.be/s_5BIi4I22w)

And upcoming half-day tutorial at IJCAI ’23!

Description of VeriPB and CakePB [BMM+23] for SAT 2023 competition
(available at https://satcompetition.github.io/2023/checkers.html)

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, BGMN22, GMN22, GMNO22, VDB22, BBN+23]

Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 27/29

https://youtu.be/s_5BIi4I22w
https://satcompetition.github.io/2023/checkers.html
https://gitlab.com/MIAOresearch/software/VeriPB

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (work by Bjørner and others)

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 28/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (work by Bjørner and others)

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 28/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (work by Bjørner and others)

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 28/29

Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (work by Bjørner and others)

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 28/29

Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 29/29

Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 29/29

References I

[ABM+11] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, Christine Rizkallah, and Pascal Schweitzer. An
introduction to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik, 53(6):287–293, December 2011.

[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference on
Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in
Computer Science, pages 727–736. Springer, August 2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Michael Jünger and Gerhard Reinelt, editors, Facets of Combinatorial Optimization,
pages 449–481. Springer, 2013.

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean
optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik, January 1995.

[BBN+23] Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande. Certified
core-guided MaxSAT solving. In Proceedings of the 29th International Conference on Automated
Deduction (CADE-29), July 2023. To appear.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 30/29

References II

[BGMN22] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry and
dominance breaking for combinatorial optimisation. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI ’22), pages 3698–3707, February 2022.

[BHvMW21] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2nd
edition, February 2021.

[BLB10] Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of SAT
and QBF solvers. In Proceedings of the 13th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in Computer Science, pages
44–57. Springer, July 2010.

[BMM+23] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy Oertel, and
Yong Kiam Tan. Documentation of VeriPB and CakePB for the SAT competition 2023. Available
at https://satcompetition.github.io/2023/checkers.html, March 2023.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 31/29

https://satcompetition.github.io/2023/checkers.html

References III

[BMN22] Bart Bogaerts, Ciaran McCreesh, and Jakob Nordström. Solving with provably correct results:
Beyond satisfiability, and towards constraint programming. Tutorial at the 28th International
Conference on Principles and Practice of Constraint Programming. Slides available at
http://www.jakobnordstrom.se/presentations/, August 2022.

[BR07] Robert Bixby and Edward Rothberg. Progress in computational mixed integer programming—A
look back from the other side of the tipping point. Annals of Operations Research, 149(1):37–41,
February 2007.

[CCT87] William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

[CGS17] Kevin K. H. Cheung, Ambros M. Gleixner, and Daniel E. Steffy. Verifying integer programming
results. In Proceedings of the 19th International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’17), volume 10328 of Lecture Notes in Computer Science,
pages 148–160. Springer, June 2017.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 32/29

http://www.jakobnordstrom.se/presentations/

References IV

[CHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In Proceedings of the 26th International
Conference on Automated Deduction (CADE-26), volume 10395 of Lecture Notes in Computer
Science, pages 220–236. Springer, August 2017.

[CKSW13] William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter. A hybrid branch-and-bound
approach for exact rational mixed-integer programming. Mathematical Programming
Computation, 5(3):305–344, September 2013.

[CMS17] Lúıs Cruz-Filipe, João P. Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution
proof checking. In Proceedings of the 23rd International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’17), volume 10205 of Lecture Notes in
Computer Science, pages 118–135. Springer, April 2017.

[EG21] Leon Eifler and Ambros Gleixner. A computational status update for exact rational mixed integer
programming. In Proceedings of the 22nd International Conference on Integer Programming and
Combinatorial Optimization (IPCO ’21), volume 12707 of Lecture Notes in Computer Science,
pages 163–177. Springer, May 2021.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 33/29

References V

[EGMN20] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differences
using pseudo-Boolean reasoning. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI ’20), pages 1486–1494, February 2020.

[GMM+20] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and James
Trimble. Certifying solvers for clique and maximum common (connected) subgraph problems. In
Proceedings of the 26th International Conference on Principles and Practice of Constraint
Programming (CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 338–357.
Springer, September 2020.

[GMN20] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

[GMN22] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Proceedings of the 28th International Conference on Principles and Practice of
Constraint Programming (CP ’22), volume 235 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 25:1–25:18, August 2022.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 34/29

References VI

[GMNO22] Stephan Gocht, Ruben Martins, Jakob Nordström, and Andy Oertel. Certified CNF translations
for pseudo-Boolean solving. In Proceedings of the 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’22), volume 236 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:25, August 2022.

[GN21] Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-Boolean
proofs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21), pages
3768–3777, February 2021.

[Goc22] Stephan Gocht. Certifying Correctness for Combinatorial Algorithms by Using Pseudo-Boolean
Reasoning. PhD thesis, Lund University, Lund, Sweden, June 2022. Available at
https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu.

[GS19] Graeme Gange and Peter Stuckey. Certifying optimality in constraint programming. Presentation
at KTH Royal Institute of Technology. Slides available at
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf, February 2019.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 35/29

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf

References VII

[GSD19] Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of constraints. In
Proceedings of the 25th International Conference on Principles and Practice of Constraint
Programming (CP ’19), volume 11802 of Lecture Notes in Computer Science, pages 565–582.
Springer, October 2019.

[HHW13a] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal
proofs. In Proceedings of the 13th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’13), pages 181–188, October 2013.

[HHW13b] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Proceedings of the 24th International Conference on Automated Deduction
(CADE-24), volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, June
2013.

[MMNS11] Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, May 2011.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 36/29

References VIII

[VDB22] Dieter Vandesande, Wolf De Wulf, and Bart Bogaerts. QMaxSATpb: A certified MaxSAT solver.
In Proceedings of the 16th International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR ’22), volume 13416 of Lecture Notes in Computer Science, pages 429–442.
Springer, September 2022.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Proceedings of the 17th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, July 2014.

Jakob Nordström (UCPH & LU) A One-Size-Fits-All Proof Logging System? Pragmatics of SAT ’23 37/29

	Intro
	MainTalk
	Pseudo-Boolean Proof Logging Basics
	Proof Logging Goals
	VeriPB Proof Fundamentals
	Strengthening Rules and Deletion

	Pseudo-Boolean Proof Logging for Different Purposes
	Decision and Optimization Problems
	Model Enumeration Problems
	Problem Reformulation

	Pseudo-Boolean Proof Logging Outlook
	Using VeriPB
	Further Challenges

	Conclusion
	Appendix

