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The Success of Combinatorial Solving (and the Dirty Little Secret)

Astounding progress last couple of decades on combinatorial solvers for, e.g.:
Boolean satisfiability (SAT) solving and optimization [BHvMW21]
Constraint programming [RvBW06]
Mixed integer linear programming [AW13, BR07]
Satisfiability modulo theories (SMT) solving [BHvMW21]

Solvers very fast, but sometimes wrong (even best commercial ones)
[BLB10, CKSW13, AGJ+18, GSD19, GS19, BMN22, BBN+23]

Even get feasibility of solutions wrong (though this should be straightforward!)

And how to check the absence of solutions?

Or that a solution is optimal? (Even off-by-one mistakes can snowball into large
errors if solver used as subroutine)
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What Can Be Done About Solver Bugs?

Software testing
Hard to get good test coverage for sophisticated solvers
Inherently can only detect presence of bugs, not absence

Formal verification
Prove that solver implementation adheres to formal specification
Current techniques cannot scale to this level of complexity

Proof logging
Make solver certifying [ABM+11, MMNS11] by outputting

1 not only answer but also
2 simple, machine-verifiable proof that answer is correct
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Proof Logging with Certifying Solvers: Workflow

Checker

Input Answer
Solver

1 Run combinatorial solving algorithm on problem input
2 Get as output not only answer but also proof
3 Feed input + answer + proof to proof checker
4 Verify that proof checker says answer is correct
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Proof Logging Desiderata

Proof

Input Answer
Solver

Checker
✓/✗

Proof format for certifying solver
should be

very powerful: minimal overhead for sophisticated reasoning
dead simple: checking correctness of proofs should be trivial

Clear conflict expressivity vs. simplicity!

Asking for both perhaps a little bit too good to be true?
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This Talk

Proof logging for combinatorial optimization is possible with single, unified method!
Build on successes in SAT solving with proof formats such as
DRAT [HHW13a, HHW13b, WHH14], GRIT [CMS17], LRAT [CHH+17], . . .
But represent constraints as 0–1 integer linear inequalities
Formalize reasoning using cutting planes [CCT87] proof system
Add well-chosen strengthening rules [Goc22, GN21, BGMN22]
Implemented in VeriPB (https://gitlab.com/MIAOresearch/software/VeriPB)

Purpose of this talk:
1 Marketing pitch ,
2 Solicit feedback
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Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
Strengthening Rules and Deletion

Pseudo-Boolean Constraints

0-1 integer linear inequalities or pseudo-Boolean constraints:∑
i

aiℓi ≥ A

ai, A ∈ Z
literals ℓi: xi or xi (where xi + xi = 1)
variables xi take values 0 = false or 1 = true

Sometimes convenient to use normalized form [Bar95] with all ai, A positive
(without loss of generality)
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Some Types of Pseudo-Boolean Constraints

1 Clauses
x ∨ y ∨ z ⇔ x + y + z ≥ 1

2 Cardinality constraints
x1 + x2 + x3 + x4 ≥ 2

3 General pseudo-Boolean constraints

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
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Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Proof Logging Goals
VeriPB Proof Fundamentals
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Pseudo-Boolean Proof Logging Wishlist

Paradigms
SAT solving
pseudo-Boolean solving
graph solving
constraint programming
automated planning
mixed integer linear programming
SMT solving

Problem types
decision / feasibility
optimization
multi-objective optimization
projected model enumeration
projected model counting
preprocessing / problem reformulation

Supported in VeriPB presently, Real Soon Now™, or
hopefully sometime in the future
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Pseudo-Boolean Proof Logging — How and Why?
If problem is (special case of) 0-1 integer linear program

just do proof logging
Otherwise

do trusted or verified translation to 0-1 ILP
provide proof logging for 0-1 ILP formulation

Goldilocks compromise between expressivity and simplicity:
1 0-1 ILP expressive formalism for combinatorial problems (including objective)
2 Powerful reasoning capturing many combinatorial arguments (even for SAT)
3 Efficient reification of constraints — example:

r ⇒ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
r ⇐ x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7

7r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 7
9r + x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 9
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VeriPB Proof Structure

1 Preamble
Load input formula
Specify settings

2 Derivation section
Derivations of new constraints
Logging of solutions

3 Output section
Listing of constraints currently in database
Input to next stage (or for debugging)

4 Conclusions section
Specification of what was established

satisfiability / unsatisfiability
optimality
enumeration of solutions
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VeriPB Proof Structure: Syntax

pseudo-Boolean proof version 2.0
f ⟨M ⟩
preserve ⟨var1 ⟩ ⟨var2 ⟩ ... ⟨varN ⟩
⟨derivation part⟩
output ⟨output part ⟩
conclusion ⟨conclusion part ⟩
end pseudo-Boolean proof
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VeriPB Proof Configuration

Core set C
Contains input formula at the start
Maintains “equivalence” with input
formula

Objective f =
∑

i wiℓi + k

0–1 linear function to minimize
Or f = 0 for decision problem
Keep track of best known bound;
initialize to ∞

Derived set D
All constraints derived during search
Also intermediate constraints used in
proof logging

Order O
Pseudo-Boolean formula encoding
pre-order (reflexive and transitive)
Syntactic proof of properties required
Applied to specified variable set z⃗
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Pseudo-Boolean Reasoning: Cutting Planes [CCT87]
Input axioms From the input
Literal axioms ℓi ≥ 0

Addition
∑

i aiℓi ≥ A
∑

i biℓi ≥ B∑
i(ai + bi)ℓi ≥ A + B

Multiplication for any c ∈ N+
∑

i aiℓi ≥ A∑
i caiℓi ≥ cA

Division for any c ∈ N+

(constraint in normalized form)

∑
i aiℓi ≥ A∑

i

⌈ai
c

⌉
ℓi ≥

⌈
A
c

⌉
Saturation
(constraint in normalized form)

∑
i aiℓi ≥ A∑

i min(ai, A) · ℓi ≥ A
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Cutting Planes Toy Example

w + 2x + y ≥ 2

Such a calculation can be written in a proof line assuming handles
C1

.= 2x + y + w ≥ 2
C2

.= 2x + 4y + 2z + w ≥ 5
Ax(z) .= z ≥ 0

using postfix notation something like
C1 2 Mul C2 Add Ax(z) 2 Mul Add 3 Div
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More About VeriPB Proofs
Variables

start with a letter in A-Z or a-z

continue with characters in A-Z, a-z, 0-9, or square and curly brackets, hyphen,
underscore, and caret
contain at least two characters

Constraints
Are referred to by positive integers (constraint IDs)
Derivation rules and requirements
Come in two flavours

1 kernel format for formally verified proof checker
2 augmented format with convenience rules such as reverse unit propagation (RUP)
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Strengthening Rules
Witness ω: substitution mapping variables to truth values or literals

Redundance-based strengthening (witness ω show how to “patch assignment”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗)

Dominance-based strengthening (witness ω “drives down potential”)
Derive constraint C from C ∪ D if exists witness ω such that

C ∪ D ∪ {¬C} ⊢ C↾ω ∪ {f↾ω ≤ f} ∪ O(z⃗↾ω, z⃗) ∪ ¬O(z⃗, z⃗↾ω)

Witness ω should be specified in proof log
Derivations should also be explicit, or be “obvious” to proof checker (like by RUP)
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Checked and Unchecked Deletion

Important to allow deletions of constraints from database
But powerful strengthening rules create problems:

Unsatisfiable formulas can turn satisfiable
Satisfiable formulas can turn unsatisfiable(!)

Solution: distinguish between deletion from core set C and derived set D
(For SAT solvers, support generic delete command in augmented format that
translates to right type of deletion behind the scenes)
Deletion of constraint C is:

1 always OK from derived set D
2 OK from core set C only if C can be rederived from C \ {C} with redundance rule

(otherwise unchecked deletion — special conditions apply)
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Conclusions for Decision Problems

NONE
Status is undetermined
SAT [ : ⟨assignment ⟩]
Propagate given assignment w.r.t. database, then check against original formula
If no assignment given, then

solution should have been logged
no unchecked deletion must have occurred

UNSAT [ : ⟨constraint ID ⟩]
Only valid if no solution has been logged
Check that specified constraint is contradictory (technically: negative slack)
If no constraint given, check that database unit propagates to contradiction
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Optimization Problems

Any solution α found is logged with soli “log solution and improve” command
α checked against current core set C
Objective-improving constraint ∑

i wiℓi ≤ −1 +
∑

i wi · α(ℓi) added to core set
(forces search for better solutions)

Note that
α need not be solution for original formula
but such solution can be reconstructed from the proof

Proof format supports not just optimality, but also non-tight upper and lower bounds
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Conclusions for Optimization Problems
NONE
No solution or lower bound found

BOUNDS ⟨LB ⟩ [ : ⟨constraint ID ⟩ ] ⟨UB ⟩ [ : ⟨assignment ⟩ ]
⟨LB⟩ and ⟨UB⟩ are integers or inf; optimality if ⟨LB⟩ = ⟨UB⟩
Lower bound
Constraint ⟨constraint ID⟩, if specified, should imply lower bound
Otherwise, f ≥ ⟨LB⟩ should be “obvious” to proof checker from current database
Upper bound
Propagate given assignment w.r.t. database, then check against original formula
If no assignment given, then

solution with value ⟨UB⟩ should have been logged
no unchecked deletion must have occurred
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Projected Model Enumeration and Preserved Variables

Command
preserve ⟨var1 ⟩ ⟨var2 ⟩ ... ⟨varN ⟩
in proof preamble (after loading formula) specifies set V of preserved variables
Preserved variables cannot appear in domain of any witness ω for strengthening rules
Any solution α found is logged with “log solution and exclude” solx command

α checked against current core set C
Solution-excluding constraint ∨

x∈V (x ̸= α(x)) added to core set
(forces search for other solutions)
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Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Conclusions for Projected Model Enumeration Problems

NONE
No solution or contradiction found
ENUMERATION PARTIAL : ⟨N ⟩
The number of solx commands in the proof log is ⟨N⟩
No unchecked deletion must have occurred

ENUMERATION COMPLETE : ⟨N ⟩ [ : ⟨constraint ID ⟩ ]
The list of solutions found and enumerated is complete
The number of solx commands in the proof log is ⟨N⟩
Check that specified constraint is contradictory (technically: negative slack)
If no constraint given, check that database unit propagates to contradiction
No unchecked deletion must have occurred
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Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Problem Reformulation and Output Section
NONE
No output
DERIVABLE
Any unsatisfiability / lower bound shown for output will be valid also for input
EQUI-SATISFIABLE
Input and output are equisatisfiable
true for decision problems with checked deletion
EQUI-OPTIMAL
Input and output have same optimal value
(or optimal solution was found and the output is unsatisfiable)
EQUI-ENUMERABLE
Input and output have the same number of projected solutions
(and no solutions have been logged)
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Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Decision and Optimization Problems
Model Enumeration Problems
Problem Reformulation

Objective Update

Objective function update command
obju ⟨constraint ID 1 ⟩ ⟨constraint ID 2 ⟩ : ⟨fnew⟩
changes objective function of (potentially reformulated) problem

Specifies two constraints in core set showing fold = fnew

fold ≤ fnew is implied by ⟨constraint ID 1⟩
fold ≥ fnew is implied by ⟨constraint ID 2⟩
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Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Using VeriPB for SAT Solving
1 Use dedicated tools for Gaussian elimination [GN21], symmetry

breaking [BGMN22], PB-to-CNF translation [GMNO22], et cetera
2 Concatenate with CDCL solver DRAT proof rewritten in VeriPB format

(https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork)

Short dictionary for DRAT-to-VeriPB translations
DRAT VeriPB
1 x1
-2 ∼x2
1 -2 3 0 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RUP rup 1 x1 1 ∼x2 1 x3 >= 1 ;
1 -2 3 0 is RAT red 1 x1 1 ∼x2 1 x3 >= 1 ; x1 -> 1

3 But LRAT syntactically rewritten for VeriPB should be way faster to check
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Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

VeriPB Documentation

VeriPB tutorial [BMN22] (video at https://youtu.be/s_5BIi4I22w)

And upcoming half-day tutorial at IJCAI ’23!

Description of VeriPB and CakePB [BMM+23] for SAT 2023 competition
(available at https://satcompetition.github.io/2023/checkers.html)

Specific details on different proof logging techniques covered in research papers
[EGMN20, GMN20, GMM+20, GN21, BGMN22, GMN22, GMNO22, VDB22, BBN+23]

Lots of concrete example files at https://gitlab.com/MIAOresearch/software/VeriPB
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Pseudo-Boolean Proof Logging Basics
Pseudo-Boolean Proof Logging for Different Purposes

Pseudo-Boolean Proof Logging Outlook

Using VeriPB
Further Challenges

Future Research Directions
Performance and reliability of pseudo-Boolean proof logging

Trim proof while verifying (as in DRAT-trim [HHW13a])
Compress proof file using binary format
Design formally verified proof checker (work in progress [BMM+23])

Proof logging for other combinatorial problems and techniques
Symmetric learning and recycling (substitution) of subproofs
Mixed integer linear programming (work on SCIP in [CGS17, EG21])
Satisfiability modulo theories (SMT) solving (work by Bjørner and others)

And more. . .
Use proof logs for algorithm analysis or explainability purposes
Lots of other challenging problems and interesting ideas
We’re hiring! Talk to me to join the pseudo-Boolean proof logging revolution! ,
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Summing up

Combinatorial solving and optimization is a true success story

But ensuring correctness is a crucial, and not yet satisfactorily addressed, concern

Certifying solvers producing machine-verifiable proofs of correctness seems like
most promising approach

Cutting planes reasoning with pseudo-Boolean constraints seems to hit a sweet
spot between simplicity and expressivity

Action point: What problems can VeriPB solve for you? ,

Thank you for your attention!
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[AGJ+18] Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale.
Metamorphic testing of constraint solvers. In Proceedings of the 24th International Conference on
Principles and Practice of Constraint Programming (CP ’18), volume 11008 of Lecture Notes in
Computer Science, pages 727–736. Springer, August 2018.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of
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