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1 LaBRI, UMR 5800, University of Bordeaux, Bordeaux, France
guillaume.baud-berthier@safe-river.com, lsimon@labri.fr

2 KTH, Royal Institute of Technology, Stockholm, Sweden
giraldez@kth.se

3 SafeRiver, Paris, France

Abstract. Following the impressive progress made in the quest for effi-
cient SAT solving in the last years, a number of researches has focused
on explaining performances observed on typical application problems.
However, until now, tentative explanations were only partial, essentially
because the semantic of the original problem was lost in the translation
to SAT.

In this work, we study the behavior of so called “modern” SAT solvers
under the prism of the first successful application of CDCL solvers, i.e.,
Bounded Model Checking. We trace the origin of each variable w.r.t. its
unrolling depth, and show a surprising relationship between these time
steps and the communities found in the CNF encoding. We also show
how the VSIDS heuristic, the resolution engine, and the learning mech-
anism interact with the unrolling steps. Additionally, we show that the
Literal Block Distance (LBD), used to identify good learnt clauses, is
related to this measure.

Our work shows that communities identify strong dependencies among
the variables of different time steps, revealing a structure that arises
when unrolling the problem, and which seems to be caught by the LBD
measure.

1 Introduction

We observed in the last years an impressive explosion of A.I. and Formal Meth-
ods tools using SAT solvers as backbones. The practical interest in SAT solver
technologies really took off in the early 2000’s when Conflict-Driven Clause
Learning (CDCL) algorithms were introduced [14,24]. This allowed huge SAT
instances, encoding application problems, to be solved in practice, where pre-
vious adhoc methods had failed. One of the first successful application of SAT
solvers, Bounded Model Checking (BMC), unrolls a transition system for a given
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number of steps, quickly producing a huge number of clauses and variables. On
this kind of applications, the laziness of data structures is crucial but such an
efficiency comes with a price: SAT solvers are now some kind of complex sys-
tems for which performances can be hardly explained. We know how to build an
efficient1 SAT solver, but the reasons of its efficiency are not clearly known.

Moreover, it has been shown that SAT formulas, now arising from many
different fields, are highly heterogeneous: some problems can have thousands
of decisions levels whereas others just have a few dozens. Some problems with
millions of variables can be solved in a few seconds whereas others still resist
after a few hundreds. If this is due to the diversity of applications using SAT
solvers, it makes harder to analyze and explain the reasons of why SAT solvers
are good: possible explanations are probably not the same on all problems.

Thus, hidden behind the success story of SAT solvers, the fact that they
are complex systems working on a wide range of different problems seems to
have prevented any simple explanation for their efficiency to arise. This is a
crucial issue for the future of SAT solving, because additional speed-ups will
certainly come from a better understanding of all the components of SAT solvers
(branching heuristic, learning mechanism, clause database cleaning). This is even
more crucial for parallel SAT solving, where simply identifying a good clause to
share or how to split the search space between cores is still unclear. Somehow
paradoxically, the reasons of most of the improvements in sequential and parallel
SAT solving are hardly understood yet. Of course, a number of works proposed
some explanations. For instance it was shown that CDCL solvers are stronger
than DPLL, unleashing the full power of propositional resolution [23]. More
recently, it was shown that other branching heuristics were possible [15]. Closer
to our current work, it was also shown that most industrial instances have a
community structure [1], which could even be used as an estimator of solver
success [21]. Moreover, it has been also shown that the measure used for learnt
clause usefulness (the Literal Block Distance) is highly related to this notion
of clusters, where the literals of the same decision level seem to belong to the
same community. In this direction, some models of random SAT formulas with
community structure have been presented to better understand SAT solvers
components [11–13]. In fact, the community structure has been successfully used
in some SAT and MaxSAT approaches [2,17,19].

However, none of these works link the structure of the SAT formulas with
the original problem they encode. If communities are clearly identified as a key
structure in real-world instances, their origin is unknown. The paper we propose
aims at answering this crucial question. We propose an experimental paper,
aiming at pointing out observed correlations between the high-level description
of problems and the behavior of the main components of the SAT solver, thus
tracing the origin of communities to the high-level description of the problem. We
chose to focus on Bounded Model Checking, because of its historical importance
in the rapid development of SAT solver technologies. More precisely, we study the

1 CDCL is nowadays the dominant technique solving this kind of problems.
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relationship between communities, clauses scoring, variable branching, conflict
analysis w.r.t. the unrolling depth of variables.

Contributions of This Paper. We show that:

– communities are built on small unrolling of time steps, revealing a structure
that is not present inside a single depth;

– LBD measures the proximity of literals in the clause, w.r.t. time steps;
– computation tends to produce clauses (proof) at larger and larger time steps;
– the learning mechanism implies touching literals when (1) deciding, (2) ana-

lyzing and (3) learning. We show that literals touched in (1), (2) and (3) show
clearly distinct time step extents. Typically, resolution variables (phase 2)
belong to more distant time steps than learnt clause literals (phase 3), which
belong to more distant than decisions literals.

Let us emphasize here the first item in the above list. It shows that the general
idea on the existence of communities in BMC is wrong, or at least only partial.
It is indeed believed that communities are simply a side effect of the unrolling
mechanism, each community (or set of communities) being simply inside a single
time step. Our work shows that variables connections between communities are
stronger than previously believed.

2 Preliminaries

We assume the reader familiar with SAT but let us just recall here the global
schema of CDCL solvers [7,9,14,18,24]: a branch is a sequence of decisions (taken
accordingly to the VSIDS heuristic), followed by unit propagations, repeated
until a conflict is reached. Each decision literal is assigned at a distinct, increas-
ing decision level, with all propagated literals assigned at the same level (we
call ”block of literals” to the set of literals assigned at the same decision level).
Each time a conflict is reached, a series of resolution steps, performed during the
conflict analysis, allows the solver to extract a new clause to learn. This clause
is then added to the clause database and a backjumping is triggered, forcing the
last learnt clause to be unit propagated. Solvers also incorporate other impor-
tant components such as preprocessing [8], restarts and learnt clause database
reduction policies. It was shown in [3] that the strategy based on Literal Block
Distance (LBD) was a good way of scoring clauses. The LBD is computed during
conflict analysis: it measures the number of distinct decisions levels occurring
in the learnt clause. Restarts are commonly following the Luby series [16], but
recent studies shown that LBD-based restarts is generally more efficient on real-
world instances [4], especially on UNSAT instances [22].

Bounded Model Checking. In this paper, we focus on finite-state transition
systems with Boolean variables only, which are commonly used to model sequen-
tial circuits. A transition system is a tuple M = 〈V, I, T, P 〉, where V is a set of
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variables, I(V ) and P (V ) are formulas over V representing the initial states and
safe states, respectively. We also refer to ¬P (V ) or Bad(V ) to express the set
of bad states. T (V, V ′) is a transition relation over V ,V ′ defining the accepted
transitions. V ′ = {v′ | v ∈ V } is the primed version of the set V , used to rep-
resent next state variables. When multiple transition relations are required, we
will use Vi to represent variables in V after i steps.

Bounded Model Checking [5,26] is an efficient bug-finding algorithm. BMC
explores bounded paths of a transition system and checks if they can lead to a
bad state. The main idea is to build a formula that is satisfiable if there exists a
path of length k from the initial states to a bad state. To this end, BMC unrolls
the transition relation k times, s.t.:

I(V0) ∧ T (V0, V1) ∧ . . . ∧ T (Vk−1, Vk) ∧ Bad(Vk)

This formula is usually translated into a CNF and then solved with a SAT solver.
If the formula is unsatisfiable, P holds for all states reachable in k iterations.
However, this definition does not ensure that Bad cannot be reached in less than
k transitions. Hence, BMCk is usually performed incrementally for k = 0 to n.
Another approach consists in extending Bad(Vk) to

∨k
i=0 Bad(Vi). If the formula

is satisfiable, the transition system has a counterexample, i.e. there exists a path
in the transition system leading to a state that contradicts the property P .

Community Structure of SAT Instances in CNF. A graph is said to
have community structure (or good clustering), if in a partition of its nodes
into communities, most edges connect nodes of the same community. In order to
analyze the quality of such partition, community structure is usually analyzed
via scoring functions. The most popular one is modularity [10,20].

Recently, it has been shown that most industrial SAT instances used in SAT
competitions have a clear community structure (or high modularity) [1], when
the CNF formula is represented as a graph. In this paper, we use the same
approach of [1] to analyze the community structure of CNF formulas. This is:
creating the Variable-Incidence Graph2 (VIG) of the CNF, and using the Louvain
method [6] to compute a lower-bound of the maximal modularity Q, which also
returns its associated partition P of the graph, i.e., a partition of the Boolean
variables of the CNF. Since we analyze the relation between variables in the
high-level BMC encoding and the low-level CNF formula, we consider VIG as
the most suitable graph representation of the formula.

We also emphasize that, although we use an approximate method to compute
the community structure, our conclusions do not seem to be a consequence of
computing a wrong partition (much different to the optimal one), as we will
show in the next section.

2 In this model, the variables of the CNF are the nodes of the graph, and there is
an edge between two variables if they appear together in a clause. In its weighted
version –the one we use–, the clause size is also considered.
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3 Communities and Unrolling Depth in SAT Encodings

The origins of community structure in industrial SAT formulas remain unknown.
In previous works, the heterogeneous set of industrial benchmarks used in the
competitions has been analyzed as a whole, regardless of where they come from or
which problems they encode. Interestingly enough, it has been shown that (clear)
community structure is a property in most of these instances. In this section, we
provide an exhaustive analysis of the relations between the community structure
and the high-level structure of the problem, on the case study of BMC problems.

Fig. 1. Relation between unrolling iterations and community structure in the instance
6s7, for different number of unrolling timesteps k.

For a given problem, we can generate different CNF formulas representing
BMCk, for different values of k. For these formulas, each Boolean variable belongs
to a certain unrolling depth x,3 and it is also assigned to a certain community y
by the clustering algorithm. Notice that it is possible that two (or more) variables
are characterized by the same (x, y) coordinates, when they both belong to the
same unrolling iteration and they both are assigned to the same community.

In Fig. 1, we represent the relation between the unrolling iterations and the
community structure of the instances BMCk encoding the problem 6s7, for dif-
ferent values of the unrolling depth k = {5, 15, 25, 35, 45, 55, 65, 75}. This is, the
iteration x and the community y of the variables of each CNF. The y-value for
some k are slightly shifted to improve the visualization.

We can observe that when the total number of unrolling iterations is small
(see k = 5), the community structure is not related to the unrolling depth, since
most communities have variables in all depths. The number of communities is

3 For simplicity, we omit the very few variables which do not belong to any iteration.
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greater than k. Interestingly enough, as we increase the total number of iterations
k, there is a clear pattern, suggesting that the correlation may be very strong
(see cases k ≥ 45).

However, each point represented in the previous plot can be just due to a
single variable. Therefore, it is hard to say if the unrolling iterations and the
community structure are indeed correlated. In order to solve this problem, we
can compute the Pearson’s correlation coefficient r between these two variables
X and Y over all these (x, y) points. The correlation coefficient is defined as:

r
X,Y

=
σX Y

σX σY
=

∑n
i=1 (xi − x̄) (yi − ȳ)

√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

where n is the size of the sample with datasets X = {x1, . . . , xn} and Y =
{y1, . . . , yn}, x̄, σX , ȳ and σY their means and standard deviations, respectively,
and σXY the covariance. Notice that when r is close to 1 (resp. to 0), the variables
X and Y are highly (resp. almost no) correlated.

For the instance analyzed in Fig. 1, we obtain the following results: r = 0.423
when k = 5, r = 0.769 when k = 25, and r = 0.968 when k = 45. These results
confirm that the community structure is actually a good proxy to represent the
unrolling depths of this problem.

Table 1. Statistics of the correlation coefficient r between unrolling iterations and
community structure over the instances of the HWMCC15, for different k.

k Mean Std Median Max P5% Min

5 0.594 0.304 0.667 0.995 0.055 0.000

10 0.677 0.304 0.808 0.997 0.108 0.023

20 0.856 0.170 0.918 0.999 0.492 0.108

40 0.892 0.155 0.956 0.999 0.580 0.109

60 0.904 0.152 0.973 0.999 0.643 0.131

Now the question is whether this occurs in all BMC problems. To answer
this question, we analyze the 513 problems of the Hardware Model Checking
2015 competition (HWMCC15). For each of these benchmarks, we create dif-
ferent BMCk, with k = {5, 10, 20, 40, 60}, compute the community structure of
those, and finally calculate the correlation coefficient r as before. In this analysis,
we have omitted those benchmarks for which the computation of the commu-
nity structure requires more than 5000 s (notice that some problems become
extremely large after a big number of unrolling iterations). Even though, the
resulting sets of instances always contain more than 400 benchmarks; the size
of the set varies for each value of k, from 400 instances when k = 60, to 509
instances when k = 5.

In Table 1, we represent the aggregated results of this analysis. In particular,
for each depth k, we compute mean, standard deviation (std), median, max,
min, and percentile 5% (P5%), over the r coefficients of all these instances.
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It is clear that, in general, the correlation between the unrolling depth and
the community structure is very strong (high mean and median, with small
deviation). In fact, it becomes stronger for bigger values of k (as we expected
from the previous experiment). We can also observe that such correlation is
surprisingly small for some instances (very small min). However, it is only the
case for a very reduced number of problems, as the percentile 5% indicates.
This analysis strongly suggests that the community structure is originated by the
process of unrolling depth iterations to create the BMC formula.

Additionally, an interesting observation depicted in Fig. 1 is that communities
computed by the clustering algorithm contain variables from different unrolling
depths, rather than just aggregating all variables of the same depth. Therefore,
the community structure reveals a non-trivial structure existing in the CNF
encoding: Our analysis also suggests that communities are spread over successive
time steps.

3.1 Communities are Stronger When Spreading over Time Steps

Our last observation above is important enough to be checked in detail. It goes
against the general belief about the existence of communities in BMC problems.
We thus propose here to search for additional evidences validating it. We also
need to check whether this is a property shared by all the BMC problems we
gathered.

For this purpose, we consider the partition of the formula in which all the
variables of the same unrolling depth conform a distinct community, and com-
pute its associated modularity Qd. In order to check that our results are not
a consequence of computing a wrong partition, much different to the optimal
one, we compare Qd w.r.t. the modularity Q computed by the clustering algo-
rithm. In Table 2, we represent the aggregated results of Q and Qd over the set of
benchmarks of the HWMCC15. Again, we represent some statistics for different
values of k.

As expected, we observe that the modularities Q and Qd increase for big-
ger values of the unrolling depth k. Interestingly, the actual modularity of the

Table 2. Statistics of the actual modularity Q and the modularity Qd using as partition
the variables of the same unrolling depth, over the instances of the HWMCC15, for
different values of depth k. The highest values between Q̄ and Q̄d are highlighted, for
each depth k.

Q Qd

k Mean Std Median Min Max P5% Mean Std Median Min Max P5%

5 0.850 0.053 0.857 0.681 0.970 0.747 0.616 0.083 0.607 0.480 0.826 0.387

10 0.874 0.047 0.877 0.701 0.977 0.786 0.687 0.085 0.676 0.549 0.901 0.450

20 0.887 0.043 0.894 0.731 0.981 0.813 0.728 0.086 0.717 0.588 0.945 0.488

40 0.906 0.038 0.907 0.759 0.986 0.837 0.751 0.086 0.739 0.609 0.968 0.509

60 0.917 0.036 0.917 0.776 0.988 0.856 0.761 0.094 0.767 0.614 0.976 0.516



72 G. Baud-Berthier et al.

formula Q is clearly greater than Qd, independently of the number of iterations
k the problem is unrolled. In fact, in many instances, the number of communi-
ties is smaller than the number of unrolling iterations k, when k is big enough
(e.g., k = 60). Another interesting observation is that Qd fluctuates less than
the correlation coefficient r (see Table 1).

These observations support our hypothesis. Therefore, this analysis indicates
that the existence of community structure in BMC problems encoded as SAT
instances is due to the process of unrolling iterations in the high-level problem,
and the larger the unrolling depth is, the more clear the community structure
becomes. However, this structure seems to identify strong dependencies among
the Boolean variables in the CNF encoding, which is different from just the
unrolling depths they belong to.

4 Unrolling Depth of Decisions, Resolutions and Learnt
Clauses

In the previous section, we have studied the static structure of SAT formulas
w.r.t. the unrolling depths of propositional variables. We now propose to analyze
where the solver performs the search in these formulas. In particular, we show
that, although the solver is not aware about the semantics of each variable (i.e.,
the unrolling iteration it belongs to), it is able to exploit some features of the
BMC encoding. This is probably due to the relation between the high-level BMC
encoding and the CNF formula, captured by the community structure.

Our experimental investigations will be based on a set of 106 BMC instances.
This set of formulas contains all the problems of the HWMCC15, unrolled until
obtaining a satisfiable answer or not solved within a timeout of 6600 s (for the
largest possible depth). We excluded the easy instances, solved in less than a
minute. We base our experimental observations on an instrumented version of
the solver Glucose.

For our analysis, we compute three sets of variables that characterize the
solver at each conflict. First, the set dec contains all the decision variables, i.e.,
all the decisions stored in the trail of the solver. Some decisions may not be
related to the current conflict, but we think that observing the evolution of dec
may be a better trace of the solver search (for instance, top decision variables may
be useful in conflicts). Second, the set res of variables used in all the resolution
steps, performed during conflict analysis. And finally, the set learnt of literals in
the learnt clause. One may notice here that resolution variables (res) are disjoint
from decision and learnt variables (dec ∪ learnt). In some sense, dec will be the
witness of the VSIDS heuristics (even if dec has a longer memory of variables
decisions, because a variable with a low VSIDS score can still be in the dec if
it was chosen at the top of the search tree and its score has been decreased).
Moreover, one may notice that the VSIDS heuristic bumps all the variables in
the set res ∪ learnt. It is thus very surprising to find different distributions of
values in these 3 sets of variables, as we will show in Sect. 4.3.
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For each of these sets, and for every conflict, we store the set size, and some
statistics about the unrolling depths in the high-level problem. Namely, they are:
min, max, mean, standard deviation (std), median, median absolute deviation
(mad) and skewness. Clearly enough, on hard problems involving millions of
conflicts, we cannot simply summarize all these data. Thus, we decided to take
samples of 10,000 values and only report summaries of the above values for each
sample. Every 10,000 conflicts, we aggregate the results by computing the same
values (min, max, et cetera) for each measure (we thus recorded, for example,
the median of min, the skewness of skewness, et cetera). After investigating all
these data, we found that working on the mean of means for each set dec, res
and learnt is sufficient to draw some conclusions; it is a good estimator of the
measured values in the sample and it is easily understood. We thus report in this
paper the mean values (computed over 10,000 conflicts) of the average number
of unrolling depths found in each set dec, res and learnt. Note that we recorded
this for SAT and UNSAT instances, and also for instances that timed-out, where
final statistics were printed before exiting. We found 7 SAT instances, 61 UNSAT
ones and 39 time-outs. We cumulated more than 1.2 billion conflicts, and 3.8
millions samples averaging each measure over 10,000 conflicts.

Fig. 2. Unrolling depth of the decision variables during the first conflict versus the last
conflicts. Values are normalized w.r.t. the total depth of each BMC SAT formula.
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4.1 Relation Between Solver Progress and Unrolling Depths

In our first experiment, we want to investigate whether the solver is first working
on the variables of certain unrolling depths before moving to variables of other
depths. For this, we compare the values of dec, res and learnt during the first
conflicts w.r.t. to these values measured during the last conflicts. In Fig. 2, we
represent this comparison for the set dec. The “first conflicts” are computed
between the first 10,000 and the 20,000 conflicts (thus, avoiding any possible
initialization phase in the very early conflicts, that could introduce a bias), and
the value of the last conflicts is computed between the last 10,000 +X conflicts,
where X is the total number of conflicts modulo 10,000. Results are normalized
w.r.t. the total number of unrolling iterations of each SAT instances. A value
close to 1 means that the set dec contains variables of the last unrolling iterations,
whilst a value close to 0 means that it contains the ones of the first iterations.

As we can see, the unrolling iterations involved in the early conflicts are
smaller than the ones at the latest stages of the search. This is the case in most
of the formulas analyzed, regardless of the answer of the solver. Interestingly
enough, this also happens in non-solved instances, indicating a common tendency
which suggests that the solver tends to start the search by the first unrolling
depths, and continues it by exploring variables of higher depths. We have only
reported the unrolling depths of the decision variables (dec). However, the same
kind of increasing tendency also occurs for the resolving variables (res), and the
variables in the learnt clause (learnt), with very similar scatter plots.

As a conclusion, we show here a general behavior of CDCL solvers over
BMC benchmarks: all the efforts of the solver (variable decisions, clause analy-
sis / resolution, clause learning) is moving to larger unrolling dephts along the
computation. This results cast a new light on previous observations [25] made on
the evolution of the centrality of variables in different parts of the solver engine
in the general case.

4.2 Unrolling Depth and Literal Block Distance

In [21], it was shown that the LBD measure correlates with the number of
communities in SAT instances, in a majority of the cases. Here, we want to
know how the LBD measure correlates with the unrolling depth of the variables of
BMC formulas. The Fig. 1 shown in Sect. 3 suggests that communities are defined
on a small number of successive unrolling iterations. We have tested a large
number of hypotheses about the correlation between the LBD of a clause and
the information of the high-level problem its variables encode (i.e., the unrolling
depth they belong to). Interestingly, the highest correlation we found relates
LBD with the (max − min) measure. This is, the maximum depth minus the
minimum depth of the variables of each learnt clause. We can represent this
relation using a heatmap for every problem. In Fig. 3, we represent one of the
most striking ones. There is clearly a relationship between these two values.

However, such a strong visual relationship does not occur in all formulas, even
if we observed it in the immense majority of the cases. In order to summarize
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Fig. 3. Heatmap showing the correlation between LBD values of clauses and the (max−
min) value of the unrolling depths of its variables. The pearson correlation is only 0.315
on this example, showing that even small values are already good indicators for a good
correlation on our set of problems.

Fig. 4. CDF of pearson correlation coefficient of LBD against (max−min) of unrolling
depth. We also show the pearson coefficient for the sizes of clauses instead of LBD.

all the results, we decided to compute, for each problem, the Pearson correlation
coefficient r between the LBD and the value of (max−min) of all learnt clauses.
Of course this correlation will not be perfect: the Pearson coefficient measures
the correlation between two lines, and we immediately see in Fig. 3 that, even if
we observe a clear tendency, the cloud of points are dispersed around a line. The
Pearson coefficient here will just indicates the general tendency of the cloud,
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and we typically cannot expect values greater than 0.5 on this kind of clouds. In
Fig. 4, we represent the cumulative distribution function of r. We also report on
the same Figure the CDF of the Pearson coefficients using sizes of clauses instead
of LBD. Our results show that, in most of the cases, the Pearson coefficient is
sufficiently high to indicates that these two values are related in most of the
cases. However, this correlation could be a simple artifact due to the length of
the learnt clause. In particular, a larger clause can have, in general, a larger
number of different decision levels, and as a consquence, a larger number of
different unrolling iterations, thus increasing the (max−min) measure as a side
effect. We test this hypothesis, and show the results on the same Fig. 4. It can
be observed that the CDF of the Pearson correlation coefficient for the clause
size (instead of the LBD) shows a much weaker correlation, suggesting that the
LBD correlation is not due to a simple syntactical artifact. These results suggest
that LBD is indeed a good metric, which is able to capture an existing structure
of the high-level problem which possibly makes the solver to exploit it.

As a conclusion, we show that, in the majority of the cases, the LBD measure
is related to the max-min unrolling depth of clauses.

4.3 On the Relation Between Decisions, Resolutions and Learning
During Solver Search

In this section, we report an interesting and surprising phenomenon we observed,
for which, unfortunately, we do not currently have a final explanation.

Let us now focus on the (max − min) value of unrolling iterations for the
set of decision variables (dec), resolutions variables (res), and variables in the
learnt clause (learnt). Based on our observations, we conjecture now that dec
has the smallest (max − min) value, whilst res has the highest one. This is:

(max − min)dec ≤ (max − min)learnt ≤ (max − min)res

In Fig. 5, we represent the percentage of samples for which this relation holds.
Notice that for each formula, we have to analyze as many samples as learnt
clauses. Thus, for reducing the computational effort, we aggregated some data
to reduce the number of samples to treat, by taking their average every 10,000
conflicts.

It can be observed that the previous relation occurs in an immense majority of
the analyzed samples. Decisions variables links fewer unrolling iterations than
the variables in the learnt clauses, which relate less unrolling iterations than
resolution variables. The CDF plot is clearly showing that this hypothesis holds
for almost all the samples we measured. This result is also surprising because
variables from dec are chosen thanks to VSIDS, which bumps variables from res
and learnt. Measuring a significant difference between these sets indicates that
a strong mechanism is at work.

This phenomenon is possibly due to variable dependencies w.r.t unit prop-
agations, which tends to imply variables of smaller/larger unrolling iterations
as the solver goes deeper in the search tree. However, we have not been able
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Fig. 5. CDF of the percentage of samples s.t. (max−min)dec ≤ (max−min)learnt ≤
(max − min)res (left Y-axis). We also report the CDF of the number of samples per
problem (right Y-axis).

to simply link this to the high-level BMC problem. We also make the hypoth-
esis that if the analysis is done on a greater number of unrolling depths, only
a restricted set of iterations is bumped more often, allowing the solver to focus
on a restricted set of iterations only. This means that, even if unit propagation
tends to propagate variables in the next unrolling iterations (which is a reason-
able hypothesis), only a few variables are more often bumped. These variables
tends to be localized near the top decision variables of the current search tree.

4.4 On the Relation Between Variable Unrolling Depths
and Variable Eliminations

The classical preprocessing used in Minisat, and hence in Glucose as well, is
essentially built on top of the Variable Elimination (VE) principle [8]. Variable
Elimination is crucial for many SAT problems, and particularly for BMC ones.
On a typical BMC problem, hundreds of thousands variables can be eliminated.
More precisely, the preprocessor orders the variables according to the (current)
product of their positive and negative occurrences in the formula, thus trying
to eliminate variables that will limit the combinatorial explosion first. Then, a
variable is eliminated only if it does not increase the formula size too much (i.e.,
no more clause after the elimination, and no clause larger than a constant in the
resolvents). We want to check here where the preprocessing is working. Our initial
hypothesis is that in most of the cases, variables are eliminated inside a single
unrolling depth. We thus build the following experimentation. We measure, for
each eliminated variable, the maximal depth of the variables occurring in the set
of all produced clauses (by the cross product) minus their minimal depth. Thus,
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Fig. 6. CDF of the percentage of eliminated variables within the same depth, at dis-
tance 1, 2, ... The number of eliminated variable within the same depth is taken as a
reference for scaling all the problems.

a (max − min) value 0 means that eliminating a variable does not add any link
between two unrolled depths.

In Fig. 6, we represent the results. This plot can be read as follows. On
approximately 50 problems (where the blue curve representing (max−min) = 1
crosses the red curve representing (max − min) = 0) there are more eliminated
variables inside a single unrolling iteration than connecting two of them. We can
see that on almost all the problems, there are only very few variable eliminations
that involve a large (max − min) value of depths. It is however surprising to
see that some problems involve the elimination of a larger set of variables not
strictly within the same community (i.e., when the blue curve is above the red
line). We think that an interesting mechanism may be at work here and fur-
ther investigations on the role of these variables may be important. However,
in general, the elimination of the variable chosen by the classical preprocessing
heuristic only involves clauses of very limited (max − min) values, as expected.

5 Discussions About Improving SAT Solvers

We strongly believe that a better understanding of what CDCL solvers are doing,
and how they are doing that is needed by the community for improving SAT
solving. Given the observations we made in this paper, we naturally tried a
number of Glucose hacks in order to try to exploit the unrolling iterations of
variables. However, until now, our attempts were at least partially unsuccessful.
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5.1 Shifting Variables Scores

We tried, at each restart triggered by the solver, to force it to branch more
deeper (or shallower) in the formula. For this, during the first descent right after
a restart, we modified the variable picking heuristics as follows: each time a
variable was picked, we took the same variable (1) one time step after, (2) on
the last time step, (3) one time step before, (4) on the first time step. What we
observed is that only the hack (2) was competitive with the original Glucose (it
solved the same amount of problems). All the other versions were degrading the
performances.

5.2 Scoring Clauses w.r.t. Max-Min of Unrolling Iterations

Of course, because of the clear relationship of LBD and the (max − min)
of unrolling iterations of variables, we tried to change Glucose clause scoring
scheme. Instead of the LBD, we simply used this (max − min) metric. We how-
ever observed a small degradation of its performance. Further experiments are
needed here, essentially because the LBD mechanism is important in Glucose
for scoring the clauses, but also for triggering restarts.

5.3 Forcing Variable Elimination According to Their Unrolling
Iterations

We also tried to change the order of variable eliminations during the preprocess-
ing step [8]. In our attempt, we first eliminate all the variables from within a
single time step: when the cross product does not produce any clause with vari-
able from different unrolling iterations. Then, variable elimination is allowed to
produce clauses containing variables from two successive time steps. Then 3, 4, ...
time steps. We observed, as expected, that almost all the variable eliminations
are done during the first round (all clauses are generated within the same time
step), even if other variables are eliminated in the other rounds. From a perfor-
mance point of view, these versions show a slightly degradation of performance.

5.4 Further Possible Ways of Improvements

Despite the disappointing experimental improvements we reported above, we
strongly believe that our work can lead to a significant improvement of SAT
solvers over BMC problems. Our work advocates for a better specialization of
SAT solvers. For instance, it may probably be possible to use the notion of
variables time steps to estimate the progress of the solver along its computation.
We are also thinking of using this knowledge for a better parallelization of SAT
solvers, for instance, by splitting the search on deeper variables only.
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6 Conclusions

Despite the empirical success of SAT solvers, they lack from a simple explanation
supporting the observed performances. One intriguing question is why they are
more efficient, at the CNF level, than adhoc approaches that can access to higher
level semantic information. In our study, we focus on the historical success appli-
cation of SAT solvers, i.e., Bounded Model Checking. We show that community
structures, identified a few years ago in most of the SAT formulas encoding
real-world problems, are not a trivial artifact due to the circuit unrolling when
encoding BMC problems. Our work is an important effort for a SAT solver exper-
imental study. We report evidences that the community structure identified in
previous works, and well captured by current SAT solvers, is unveiling a struc-
ture that arise when unrolling the circuit only (on our set of BMC problems).
This is an interesting finding, that answers open questions about the origin of
communities. We also show that the proof built by the SAT solver, approximated
in our study by the set of all learnt clauses is evolving along the computation,
producing clauses of higher unrolling depths at the latest stages of the search,
rather than at the beginning of the execution.

We plan to extend our work in many ways. First, we would like to study
the semantic of SAT formulas in other domains, like CSP benchmarks encoding
planning or scheduling problems, or cryptographic formulas. In all these cases,
we think that working on benchmark structures could help SAT solver designers
to specialize their solvers to some important applications. We could also expect
that CSP solvers could benefit from an expertise of how SAT solvers are working
on the underlying SAT formula representing such CSP problems. In particular,
this may be useful to refine the heuristic used to solve such instances. Second,
we would like to test whether SAT solvers could benefit from the unrolling depth
information for BMC problems. We particularly think of studying the unsatisfi-
able proof in order to work on a better parallelization of SAT solvers specialized
for BMC problems.
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