
Certified Core-Guided MaxSAT Solving

Jeremias Berg1 , Bart Bogaerts2 , Jakob Nordström3,4 ,
Andy Oertel3,4(B) , and Dieter Vandesande2

1 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland

2 Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
3 University of Copenhagen, Copenhagen, Denmark

4 Lund University, Lund, Sweden

andy.oertel@cs.lth.se

Abstract. In the last couple of decades, developments in SAT-
based optimization have led to highly efficient maximum satisfiability
(MaxSAT) solvers, but in contrast to the SAT solvers on which MaxSAT
solving rests, there has been little parallel development of techniques
to prove the correctness of MaxSAT results. We show how pseudo-
Boolean proof logging can be used to certify state-of-the-art core-guided
MaxSAT solving, including advanced techniques like structure sharing,
weight-aware core extraction and hardening. Our experimental evalua-
tion demonstrates that this approach is viable in practice. We are hope-
ful that this is the first step towards general proof logging techniques for
MaxSAT solvers.

Keywords: MaxSAT · core-guided search · proof logging · certifying
algorithms

1 Introduction

Combinatorial optimization is one of the most impressive, and most intriguing,
success stories in computer science. This area deals with computationally very
challenging problems, which are widely believed to require exponential time in
the worst case [21,49]. In spite of this, during the last couple of decades aston-
ishing progress has been made on so-called combinatorial solvers for a number
of different algorithmic paradigms such as Boolean satisfiability (SAT) solving
and optimization [15], constraint programming (CP) [72], and mixed integer pro-
gramming (MIP) [1,16]. Today, such solvers are routinely used to solve real-world
problems with hundreds of thousands or even millions of variables.

While the performance of modern combinatorial solvers is truly impressive,
one negative aspect is that they are highly complex pieces of software, and
it is well documented that even mature state-of-the-art solvers sometimes give
wrong results [2,18,25,37]. This can be fatal for applications where correctness is
a non-negotiable demand. Perhaps the most successful approach for addressing
this problem so far is the requirement in the SAT solving community that solvers
c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 1–22, 2023.
https://doi.org/10.1007/978-3-031-38499-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_1&domain=pdf
http://orcid.org/0000-0001-7660-8061
http://orcid.org/0000-0003-3460-4251
http://orcid.org/0000-0002-2700-4285
http://orcid.org/0000-0001-9783-6768
http://orcid.org/0000-0002-8150-3202
https://doi.org/10.1007/978-3-031-38499-8_1

2 J. Berg et al.

should be certifying [3,62], meaning that when given a formula a solver should
output not only a verdict whether the formula is satisfiable or unsatisfiable, but
also an efficiently machine-verifiable proof log establishing that this verdict is
guaranteed to be correct. One can then feed the input formula, the verdict, and
the proof log to a special, dedicated proof checker, and accept the result if the
proof checker agrees that the proof log shows that the solver computation is
valid. Over the years, different proof formats such as RUP [43], TraceCheck [14],
DRAT [44,45], GRIT [27], and LRAT [26] have been developed, and for almost
a decade DRAT proof logging has been compulsory in the (main track of the)
SAT competition. However, there has been very limited progress in designing
analogous proof logging techniques for more powerful algorithmic paradigms.

Our focus in this work is on the optimization paradigm that is arguably
closest to SAT solving, namely maximum satisfiability or MaxSAT solving [8,56],
and the challenge of developing proof logging techniques for MaxSAT solvers.

1.1 Previous Work

Since essentially all modern MaxSAT solvers are based on repeated invocations
of SAT solvers, a first question is why SAT proof logging techniques are not
sufficient. While DRAT is a very powerful proof system, it seems that the over-
head of generating proofs of correctness for the rewriting steps in between SAT
solver calls in MaxSAT solvers is too large to be tolerable for practical purposes.
Another, related, problem is that for optimization problems one needs to reason
about the objective function, which DRAT struggles to do since its language is
limited to disjunctive clauses. But perhaps the biggest challenge is that while
modern SAT solving is completely dominated by the conflict-driven clause learn-
ing (CDCL) method [11,59,66], for MaxSAT there is a rich variety of approaches
including linear SAT-UNSAT (or model-improving search) [31,54,68], core-
guided search [4,7,35,67], implicit hitting set (IHS) search [28,29], and some
recent work on branch-and-bound methods [57] (where we stress that the lists
of references are far from exhaustive).

One tempting solution to circumvent this heterogeneity of solving approaches
is to treat the MaxSAT solver as a black box and use a single call to a certify-
ing SAT solver to prove optimality of the final solution found. However, there are
several problems with this proposal. Firstly, we would still need proof logging to
ensure that the input to the SAT solver is a correct encoding of a claim of optimal-
ity for the correct problem instance. Secondly, such a SAT call could be extremely
expensive, running counter to the goal of proof logging with low (and predictable)
overhead. Finally, even if the SAT-call approach could be made to work efficiently,
this would just certify the final result, and would not help validate the correctness
of the reasoning of the solver. For these reasons, our goal is to provide proof logging
for the actual computations of the MaxSAT algorithm.

While some proof systems and tools have been developed specifically for
MaxSAT [19,34,48,53,64,65,69–71], none of them comes close to providing
general-purpose proof logging, because they apply only for very specific algo-
rithm implementations and/or fail to capture the full range of reasoning used in

Certified Core-Guided MaxSAT Solving 3

an algorithmic approach. A recent work [75] by two co-authors on the current
paper instead leverages the pseudo-Boolean proof logging system VeriPB [76]
to certify correctness of the unweighted linear SAT-UNSAT solver QMaxSAT.
VeriPB is similar in spirit to DRAT , but operates with more general 0–1 linear
inequalities rather than just clauses. This simplifies reasoning about optimiza-
tion problems, and also makes it possible to capture the powerful MaxSAT solver
inferences in a more concise way. VeriPB has previously been used for proof
logging of enhanced SAT solving techniques [17,42] and pseudo-Boolean solv-
ing [38], as well as for providing proof-of-concept tools for a nontrivial range of
techniques in constraint programming [33,41] and subgraph solving [39,40].

1.2 Our Contributions

In this work, we use VeriPB to provide, to the best of our knowledge for the
first time, efficient proof logging for the full range of techniques in a cutting-edge
MaxSAT solver. We consider the state-of-the-art core-guided solver CGSS [47],
based on RC2 [46], and show how to enhance CGSS to output proofs of cor-
rectness of its reasoning, including sophisticated techniques such as stratifica-
tion [6,58], intrinsic-at-most-one constraints [46], hardening [6], weight-aware
core-extraction [13], and structure sharing [47]. We find that the overhead for
such proof logging is perfectly manageable, and although there is certainly room
to improve the proof verification time, our experiments demonstrate that already
a first proof-of-concept implementation of this approach is practically feasible.

It has been shown previously [32,39,52] that proof logging can also serve as
a powerful debugging tool. This is because faulty reasoning is likely to lead to
unsound proofs, which can be detected even if the solver produces correct output
for all test cases. We exhibit yet another example of this—some proofs for which
we struggled to make the verification work turned out to reveal two well-hidden
bugs in RC2 and CGSS that earlier extensive testing had failed to uncover.

Although it still remains to provide proof logging for other MaxSAT
approaches such as (general, weighted) linear SAT-UNSAT and implicit hitting
set (IHS) search, we are optimistic that our work could serve as an important
step towards general adoption of proof logging techniques for MaxSAT solvers.

1.3 Outline of This Paper

After reviewing preliminaries for pseudo-Boolean reasoning and core-guided
MaxSAT solving in Sects. 2 and 3, we explain how core-guided MaxSAT solvers
can be equipped with proof logging methods in Sect. 4. In Sect. 5 we present our
experimental evaluation, after which some concluding remarks and directions for
future research are given in Sect. 6.

2 Preliminaries

We start by a review of some standard material which can be found, e.g., in [20,
38,42]. A literal � over a Boolean variable x (taking values in {0, 1}, which we

4 J. Berg et al.

identify with false and true, respectively) is x itself or its negation x, where
x = 1 − x. A pseudo-Boolean (PB) constraint is a 0-1 integer linear inequality
C

.=
∑

i ai�i ≥ A (where .= denotes syntactic equality). When convenient, we
can assume without loss of generality that PB constraints are in normalized
form [10]; i.e., all literals �i are over distinct variables and the coefficients ai

and the degree (of falsity) A are non-negative integers. The set of literals in
C is denoted lits(C). The negation of C is ¬C

.=
∑

i ai�i ≤ A − 1 (rewritten
in normalized form when needed). A pseudo-Boolean formula is a conjunction
F

.=
∧

j Cj of PB constraints. Note that a disjunctive clause can be viewed as a
PB constraint with all coefficients and the degree equal to 1, and so formulas in
conjunctive normal form (CNF) are special cases of PB formulas.

A (partial) assignment ρ is a (partial) function from variables to {0, 1}, which
we extend to literals by respecting the meaning of negation. Applying ρ to a
constraint C yields C�ρ by substituting the variables assigned in ρ by their values,
and for a formula F

.=
∧

j Cj we define F�ρ
.=

∧
j Cj�ρ. The constraint C is

satisfied by ρ if
∑

ρ(�i)=1 ai ≥ A, and ρ satisfies F if it satisfies all C ∈ F , in which
case F is satisfiable. A formula lacking satisfying assignments is unsatisfiable.
We say that F implies C, denoted F |= C, if any assignment satisfying F also
satisfies C.

An objective O
.=

∑
i wi�i +M is an affine function over literals �i to be mini-

mized by (total) assignments α satisfying F . The value (or cost) of an objective O
under such an α, which we refer to as a solution, is O(α) =

∑
α(�i)=1 wi + M .

We write coeff (O, �i) to denote the coefficient wi of a literal �i ∈ lits(O).
The foundation of the pseudo-Boolean proof logging in this paper is the cut-

ting planes proof system [24], which is a method to iteratively derive new con-
straints implied by a pseudo-Boolean formula F . If C and D have been derived
before or are axiom constraints in F , then any positive linear combination of
these constraints can be derived. Literal axioms � ≥ 0 can also be added to any
previously derived constraints. For a constraint

∑
i ai�i ≥ A in normalized form,

division by a positive integer d derives
∑

i�ai/d��i ≥ �A/d�, and we also add
a saturation rule that derives

∑
i min{ai, A} · �i ≥ A (where the soundness of

these rules crucially depends on the normalized form). It is well known that any
PB constraint implied by F can be derived using these rules.

A constraint C is said to unit propagate the literal � to true under an assign-
ment ρ if C�ρ cannot be satisfied unless � is true. During unit propagation on
F under ρ, we extend ρ iteratively by any propagated literals until an assign-
ment ρ′ is reached under which no constraint C ∈ F is propagating or some
constraint C wants to propagate a literal that has already been assigned to the
opposite value. The latter case is called a conflict, since C is violated by ρ′. We
say that F implies C by reverse unit propagation (RUP), and that C is a RUP
constraint with respect to F , if F ∧ ¬C unit propagates to conflict under the
empty assignment. It is not hard to see that F |= C holds if C is a RUP con-
straint, and as a convenient shorthand we will add a RUP rule for deriving new
constraints.

Certified Core-Guided MaxSAT Solving 5

In addition to deriving constraints that are implied by a formula F , we also
allow deriving so-called redundant constraints C that are not implied by F as
long as some optimal solution is guaranteed to be preserved. This is done by
extending the proof system with a redundance-based strengthening rule [17,42].
We will only need the special case of this rule saying that for a fresh variable z
and for any constraint D

.=
∑

i ai�i ≥ A we can introduce the reified constraints

C⇒
reif(z,D) .= Az +

∑
i ai�i ≥ A (1a)

C⇐
reif(z,D) .= (

∑
i ai − A + 1) z +

∑
i ai�i ≥

∑
i ai − A + 1 (1b)

encoding the implications z ⇒ D and z ⇐ D, respectively. We refer to z as the
reification variable, and when D is clear from context, we will sometimes write
just C⇒

reif(z) for (1a) and C⇐
reif(z) for (1b).

The maximum satisfiability (MaxSAT) problem can be described conveniently
as a special case of pseudo-Boolean optimization. A discussion on the equivalence
of the following and the—more classical—clause-centric definition can be found
in, for instance, [8,55]. An instance (F,O) of the (weighted partial) MaxSAT
problem consists of a CNF formula F and an objective function O written as a
non-negative affine combination of literals. The goal is to find a solution α that
satisfies F and minimizes O(α). We say that such a solution α is optimal for the
instance and that the optimal cost of the instance (F,O) is O(α).

3 The OLL Algorithm for Core-Guided MaxSAT Solving

We now proceed to discuss the core-guided MaxSAT solving in CGSS, which is
based on the OLL algorithm [5,63], and describe the main heuristics used in effi-
cient implementations of this algorithm. Given a MaxSAT instance (Forig , Oorig),
OLL takes an optimistic view and attempts to find an assignment satisfying Forig

in which Oorig equals its constant term (i.e., all literals in lits(Oorig) are false).
If such a solution exists, it is clearly optimal. Otherwise, the solver will extract
a core K, which is a clause such that (i) K only contains objective literals,
i.e., lits(K) ⊆ lits(Oorig), and (ii) Forig implies K, which means that any
solution to Forig has to set at least one literal in lits(K) to true. The cost
w(K,O) = min{coeff (O, �) : � ∈ lits(K)} of a core K is the smallest coefficient
in the objective O of any literal in K. The core K is used to (conceptually)
reformulate the instance into (Fref , Oref) which has the same minimal-cost solu-
tions. The constant term LB in Oref is a lower bound on the optimal cost of
the instance, and the reformulation is done in such a way that the lower bound
increases (exactly) with the cost of the core K as defined above.

In more detail, the algorithm maintains a reformulated objective Oref (ini-
tialized to Oorig) such that the (non-normalized) pseudo-Boolean constraint

Oorig ≥ Oref
.=

∑

b∈lits(Oorig)

coeff (Oorig , b) ·b ≥
∑

b′∈lits(Oref)

coeff (Oref , b
′) ·b′ +LB (2)

6 J. Berg et al.

is satisfied by all solutions of Fref . Note that the constraint (2), which we refer
to as an objective reformulation constraint, implies that the constant term LB
is a lower bound on the optimal cost.

In each iteration, a SAT solver is queried for a solution α to Fref with
Oref (α) = LB . If such an α exists, the constraint (2) yields that Oorig(α) = LB ,
and so α is a minimal-cost solution to (Forig , Oorig). Otherwise, the solver returns
a new core K that requires at least one literal in lits(Oref) to be set to 1. This
implies that the optimal cost is strictly larger than LB , and the core K is used
for a new reformulation step.

The objective reformulation step adds new clauses to Fref encoding the con-
straints yK,k ⇐

∑
b∈Lit(K) b ≥ k for k = 2, . . . , |K|. The new variables yK,k

are added to Oref with coefficient w(K,Oref) equalling the cost of K, and the
coefficient in Oref of each literal in K is decreased by the same amount. Finally,
the lower bound LB—the constant term of Oref —is also increased by w(K,Oref).
Since yK,k encodes that at least k literals in K are true, we have the equality
∑

b∈lits(K) b = 1 +
∑|K|

k=2 yK,k, where the additive 1 comes from the fact that at
least one literal in K has to be true, and the reformulation step is just applying
this equality multiplied by w(K,Oref) to Oref . Notice that the variables added
during objective reformulation can later be discovered in other cores. In practice,
all implementations of OLL we are aware of encode the semantics of counting
variables incrementally [60]. This means that initially only the variable yK,2 is
defined, and the variable yK,i+1 is introduced only after yK,i is found in a core.

Implementations of OLL for MaxSAT—including the CGSS solver that we
enhance with proof logging in this work—extend the algorithm with a number of
heuristics such as stratification [6,58], hardening [6], the intrinsic-at-most-ones
technique [46], weight-aware core extraction [13], and structure sharing [47].

Stratification extracts cores not over all literals in Oref but only over those
whose coefficient is above some bound wstrat . This steers search toward cores
containing literals with high coefficients, resulting in larger increases of LB . Once
no more cores over such variables can be found, the algorithm lowers wstrat ,
terminating only after no more cores can be found with wstrat = 1. The fact that
no more cores containing only variables with coefficients above wstrat exist is
detected by the SAT solver returning a (possibly non-optimal) solution α. The
minimal cost Oorig(α) of all such solutions gives an upper bound UB on the
optimal cost of the instance, allowing OLL to terminate as soon as LB = UB .

Hardening fixes literals in Oref to 0 based on information provided by the
current upper and lower bounds UB and LB . If for any b ∈ lits(Oref) it holds
that coeff (Oref , b)+LB > UB , then any solution α with b = 1 would have higher
cost than the current best solution known, and would thus not be optimal.

The intrinsic-at-most-one technique identifies subsets S ⊆ lits(Oref) of objec-
tive literals such that

∑
b∈S b ≤ 1 is implied, i.e., any solution can assign at most

one literal in S to 0. This is used both to increase the lower bound and to refor-
mulate the objective. If we let wmin = min{coeff (Oref , b) : b ∈ S}, then S implies
a lower bound increase of LBS = (|S| − 1) · wmin . Additionally, we define a new
variable �S by the clause �S +

∑
b∈S b ≥ 1 to indicate if in fact all literals in S

Certified Core-Guided MaxSAT Solving 7

are true, and introduce it in the reformulated objective with coefficient wmin .
This means that we remove the already known lower bound LBS from Oref and
transfer the possible additional cost wmin from S to the variable �S .

Weight-aware core extraction (WCE) delays objective reformulation, and the
accompanying increase in new variables and clauses, for as long as possible.
When a new core K is extracted by a solver that uses WCE, initially only the
coefficient of each b ∈ lits(K) is lowered and the lower bound LB is increased
by w(K,Oref). Then the SAT solver is invoked again with the literals, that
still have coefficients above wstrat in Oref , set to 0. When the SAT solver finds
a satisfying assignment extending the assumptions, all objective reformulations
steps are then performed at once. This is correct since the final effect is the same
as if the core would have been discovered one by one and immediately followed
by objective reformulation. Notice that this core extraction loop is guaranteed to
terminate since the coefficient of at least one variable is decreased to 0 for each
new core. Structure sharing is a recent extension to weight-aware core extraction
that makes use of the potential overlap in cores detected in order to achieve more
compact encodings of counting variable semantics.

4 Proof Logging for the OLL Algorithm for MaxSAT

We have now reached a point where we can describe the contribution of this
work, namely how to add proof logging to an OLL-based core-guided MaxSAT
solver, including all the state-of-the-art techniques described in Sect. 3.

In our proof logging routines we maintain the invariants described next. The
reformulated objective Oref is already implicitly tracked by the solver and at all
times it is possible to derive that Oorig ≥ Oref as in (2). We also keep track of
the current upper bound UB on Oorig and best solution αbest found so far. All
cores that have been found and processed are in the set K.

SAT Solver Calls. The CDCL SAT solvers used in core-guided MaxSAT algo-
rithms can support DRAT proof logging, and since the proof format used by
VeriPB is a strict extension of DRAT (modulo small and purely syntactical
modifications) it is straightforward to provide proof logging for the part of the
reasoning done in SAT solver calls, and to add all learned clauses to the proof
checker database.

Each invocation of the SAT solver returns either a new solution α or a new
core K. When a solution α with Oorig(α) < UB is obtained, it is logged in the
proof, which adds the objective-improving constraint

Oorig ≤ UB − 1 (3a)
(which is

∑

b∈lits(Oorig)

coeff (Oorig , b) · b ≥ 1 +
∑

b∈lits(Oorig)

coeff (Oorig , b) − UB (3b)

in normalized form). A technical side remark is that later solutions with cost
greater than UB cannot successfully be logged, since they violate the con-
straint (3a) added to the proof checker database, and so the proof logging rou-
tines make sure to only log solutions that improve the current upper bound.

8 J. Berg et al.

If the SAT solver instead returns a new core K, this clause is guaranteed to
be a reverse unit propagation (RUP) clause with respect to the set of clauses
currently in the solver database, and so we can use the RUP rule to add K
to the proof checker database (which contains a superset of the clauses known
by the solver). For our book-keeping, we also add K to the set K. A special
case is that K could be the contradictory empty clause, corresponding to the
pseudo-Boolean constraint 0 ≥ 1. This means that there are no solutions to the
formula.

To optimize the efficiency of proof verification, constraints should be deleted
from the proof when they are no longer needed. Since SAT solver proofs are
only used to prove unsatisfiability this does not cause any issues, but when
certifying optimality we have to be careful in order not to create better-than-
optimal solutions (which could happen if, e.g., constraints in the input formula
are removed). The checked deletion rule [17] ensuring this in VeriPB does not
have any analogue in DRAT , so some care is needed here when translating SAT
solver proofs into the VeriPB format.

Incremental Totalizer with Structure Sharing. Different implementations of OLL
for MaxSAT differ in which encoding is used for the counting variables introduced
during objective reformulation [9,50,51]. The two solvers we consider use total-
izers [9], so we start by explaining this encoding and then show how to provide
proof logging for the clauses added to the proof checker database.

The totalizer encoding for a set I = {�1, . . . , �n} of literals is a CNF formula T
that defines counting variables yI,j for j = 1, . . . , n such that for any assignment
that satisfies T the variable yI,j is true if and only if

∑n
i=1 �i ≥ j. The structure

of T can be viewed as a binary tree, with literals in I at the leaves and with
each internal node η associated with variables counting the true leaf literals in
the subtree rooted at η. The variables yI,j are associated with the root of the
tree.

More formally, given a set of literals I, we construct a binary tree with leaves
labelled by the literals in I. For every node η of T , let lits(η) denote the leaves
in the subtree rooted at η; where it is convenient, we will overload I to also refer
to the root note. For each internal node η, the totalizer encoding introduces
the counting variables Sη = {yη,1, . . . , yη,|lits(η)|}, the meaning of which can be
encoded recursively in terms of the variables Sη1 and Sη2 for the children η1
and η2 of η by the (pseudo-Boolean form of the) clauses

C⇐
η (α, β, σ) .= yη,σ + yη1,α + yη2,β ≥ 1 (4a)

C⇒
η (α, β, σ) .= yη,σ+1 + yη1,α+1 + yη2,β+1 ≥ 1 (4b)

for all integers α, β, σ such that α + β = σ and 0 ≤ α ≤ |lits(η1)|, 0 ≤ β ≤
|lits(η2)|, and 0 ≤ σ ≤ |lits(η)|. We use the notational conventions in (4a)–
(4b) that y�,1 = � for all leaves �, and that yη,0 = 1 and yη,|lits(η)|+1 = 0 for
all nodes η (so that clauses containing yη,0 or yη,|lits(η)|+1 can be simplified to
binary clauses or be omitted when they are satisfied). The clauses C⇒

η (α, β, σ)

Certified Core-Guided MaxSAT Solving 9

in (4b) are not necessarily added to the clause database of the MaxSAT solver,
but are sometimes included for improved propagation.

We now turn to the question of how to derive the clauses (4a)–(4b) encod-
ing the meaning of the counting variables yI,j in the proof. This is a two-step
process. First, reified pseudo-Boolean (and, in general, non-clausal) constraints
C⇒

reif(yη,j) and C⇐
reif(yη,j) as in (1a)–(1b), encoding that yη,j holds if and only

if
∑

�∈lits(η) � ≥ j, are derived by redundance-based strengthening. Then the
clauses added to the MaxSAT solver are derived from these pseudo-Boolean con-
straints. Although we omit the details due to space constraints, it is not hard to
show that for any internal node η with children η1 and η2, the clauses C⇐

η (α, β, σ)
and C⇒

η (α, β, σ) in (4a)–(4b) can be derived from the constraints C⇐
reif(yη,σ),

C⇒
reif(yη,σ), C⇐

reif(yη1,α), C⇒
reif(yη1,α), C⇐

reif(yη2,β), and C⇒
reif(yη2,β) by standard cut-

ting planes derivations as in [75]. In particular, the certification of these totalizers
can be done incrementally: clauses in the encoding can be derived as the corre-
sponding counter variables are lazily introduced in the OLL algorithm.

This approach is also compatible with structure sharing, where subtrees of
a previously constructed totalizer tree can be reused (to avoid doing the same
work twice). The only constraints from a subtree rooted at η∗ that are needed
when generating another totalizer encoding at a higher level are the constraints
C⇒

reif(yη∗,σ) and C⇐
reif(yη∗,σ) defining the counter variables in the subtree root η∗.

To decrease the memory usage of the proof checker, it can be useful to delete
reification constraints from the proof once we know that they will no longer be
needed. Without structure sharing, for an internal node η, once all clauses that
mention yη,j are created, the constraints C⇐

reif(yη,j) and C⇒
reif(yη,j) will not be

used anymore and can thus be deleted. On the other hand, structure sharing
reuses as many counting variables as possible, even over multiple iterations of
weight-aware core extraction. This means that C⇐

reif(yη,j) and C⇒
reif(yη,j) need

to be retained, even after all clauses in the totalizer encoding for all parents of
node η have been created.

Objective Reformulation. If counting variables yK,i for i = 2, . . . , sK have been
introduced for the core K, then the objective reformulation with respect to K
is derived with the help of the constraint

∑

b∈K

b ≥ 1 +
sK∑

i=2

yK,i (5a)

(or
∑

b∈K

b +
sK∑

i=2

yK,i ≥ sK (5b)

in normalized form). The constraint (5b) can in turn be obtained from the core
clause K and the reified constraints C⇒

reif(yK,j). It is clear that this should be pos-
sible, since the latter constraints define the variables yK,j precisely so that (5b)
should hold, and we refer to Algorithm 5 in [38] for the details. Also, each time

10 J. Berg et al.

a new counting variable yK,j is introduced for a core K, we add it to (5b) to
maintain this constraint as an invariant.

To illustrate how this update works, suppose we have a core K
.=

∑n
i=1 bi ≥ 1

for which
∑n

i=1 b +
∑sK−1

i=2 yK,i ≥ sK − 1 has already been derived. The next
counting variable yK,sK is introduced by the reification sK ·yK,sK +

∑n
i=1 bi ≥ sK .

The previous constraint is multiplied by sK − 1 and added to the new reified
constraint, yielding sK ·

∑n
i=1 b+(sK −1)·

∑sK−1
i=2 yK,i+sK ·yK,sK ≥ (sK −1)·sK +1.

Dividing this last constraint by sK results in
∑n

i=1 b +
∑sK

i=2 yK,i ≥ sK , which is
the desired updated constraint.

For a set of extracted cores K, we can derive the objective reformulation
constraint Oorig ≥ Oref by multiplying (5b) for each K ∈ K by the cost w(K,Oref)
of K and summing up all these multiplied constraints. The fact that we have
an inequality Oorig ≥ Oref rather than an equality is due to the incremental use
of totalizers. More specifically, if sK = |lits(K)| would hold for every K ∈ K, it
would be possible to derive Oorig = Oref instead. Here we would like to stress one
subtlety for developing proof logging for OLL: as the algorithm progresses and
more output variables of totalizers are introduced (i.e., the counters sK increase),
the reformulated objective potentially also increases—because of added counted
variables when sK increases we have the inequality Oorig ≥ Onew

ref ≥ Oold
ref . For

this reason, the old constraint Oorig ≥ Oold
ref cannot be used to derive Oorig ≥

Onew
ref after objective reformulation. Instead, we have to derive Oorig ≥ Oref from

scratch each time the solver argues with the reformulated objective. For doing
this we need to have access to the entire set K of cores.

Proving Optimality. When the solver has found an optimal solution and estab-
lished a matching lower bound, optimality is certified in the proof log using a
proof by contradiction from the objective reformulation constraint Oorig ≥ Oref

in (2) and the (normalized form of the) objective-improving constraint Oorig ≤
UB − 1 in (3b). If we add these two constraints and cancel like terms, we get

∑

b′∈lits(Oref)

coeff (Oref , b
′) · b

′ ≥ 1 − UB + LB +
∑

b′∈lits(Oref)

coeff (Oref , b
′) . (6)

Since we have UB = LB when the optimal solution has been found, and since
∑

b′∈lits(Oref)
coeff (Oref , b

′) · b′
cannot possibly exceed

∑
b′∈lits(Oref)

coeff (Oref , b
′),

the constraint (6) can be simplified to contradiction 0 ≥ 1.

Intrinsic At-Most-One Constraints. Certifying intrinsic at-most-one constraints
for a set S ⊆ lits(Oref) of literals requires deriving (i) the at-most-one constraint
stating that at most one b ∈ S is assigned to 0 by any solution and (ii) constraints
defining the variable �S . Such sets S are detected by unit propagation that
implicitly derives implications bi ⇒ bj in the form of binary clauses bi + bj ≥ 1
for every pair of variables in S. In the proof log, all these binary clauses can
be obtained by RUP steps, after which the at-most-one constraint

∑
b∈S b ≤ 1

(which is
∑

b∈S b ≥ |S| − 1 in normalized form) is derived by a standard cutting
planes derivation (see, e.g., [24]).

Certified Core-Guided MaxSAT Solving 11

The reified constraints �S ⇐
∑

b∈S b ≥ |S| and �S ⇒
∑

b∈S b ≥ |S| defining
the variable �S (which are �S +

∑
b∈S b ≥ 1 and �S +

∑
b∈S b ≥ |S|, respectively, in

normalized form) are derived by redundance-based strengthening. Note that the
latter constraint does not exist in the MaxSAT solver, but we need it in the proof
in order to derive the objective reformulation for the at-most-one constraint.

Hardening. Formally, hardening corresponds to deriving b ≥ 1 in the proof for
some literal b ∈ lits(Oref) for which UB < LB + coeff (Oref , b) holds. Such an
inequality b ≥ 1 is implied by RUP if we first derive the constraint (6), since
assigning b = 1 results in (6) being contradicting.

Upper Bound Estimation. A final technical proof logging detail is that some
implementations of the OLL algorithm for MaxSAT—including the Python-
based version of CGSS—do not use the actual cost of the solution found by the
SAT solver as the upper bound UB when hardening. In order to avoid the over-
head in Python of extracting the solution from the SAT solver, an upper bound
estimate UBest is computed instead based on the initial assignment passed to the
SAT solver in the call. Since any valid estimate is at least the cost of the solution
found (i.e., UBest ≥ UB), hardening steps based on UBest can be justified by first
deriving Oorig ≤ UBest − 1, which follows from the latest objective-improving
constraint (3a). However, in order to handle solutions correctly in the proof, the
proof logging routines need to extract the solution found by the solver and com-
pute the actual cost, which means that a Python-based solver will not be able
to avoid this overhead when running with proof logging.

Worked-Out Example. We end this section with a complete, worked-out example
of OLL solving and proof logging for the toy MaxSAT instance (F,O) with
formula F = {(b1 ∨x), (¬x∨ b2), (b3 ∨ b4)} and objective O = 5b1 +5b2 + b3 + b4.

After initialization, the internal SAT solver of the OLL algorithm is loaded
with the clauses of F and the proof consists of constraints (1)–(3) in Table 1.
The OLL search begins by invoking the SAT solver on the clauses in F in order
to check the existence of any solutions. Assume the SAT solver returns the
solution α1 assigning b1 = b3 = b4 = 1 and b2 = x = 0. This solution has
objective value O(α1) = Oorig(α1) = 7 so the algorithm updates UB = 7 and
logs the objective-improving constraint (4) in Table 1 equivalent to Oorig ≤ 6.

Assume the stratification bound wstrat is initialised to 2. Then the solver is
invoked with b1 = b2 = 0 and returns the core K1

.= b1 + b2 ≥ 1, which is added
to the proof as constraint (5). As already mentioned, core clauses are guaranteed
to be RUP with respect to the set of clauses in the SAT solver database, which
are also added to the proof.

For simplicity, we ignore WCE and structure sharing in this example, mean-
ing that the solver next reformulates the objective based on K1 by introducing
clauses enforcing yK1,2 ⇐ (b1 + b2 ≥ 2) for the new counting variable yK1,2. This
is done by (i) introducing the pseudo-Boolean constraints (6) and (7) in Table 1
by reification, and (ii) deriving the clauses corresponding to these constraints.
While the MaxSAT solver only uses the implication (6), the proof also requires

12 J. Berg et al.

Table 1. Example proof produced by a certified OLL solver.

id Pseudo-Boolean constraint Justification

(1) b1 + x ≥ 1 input

(2) b2 + x ≥ 1 input

(3) b3 + b4 ≥ 1 input

(4) 5b1 + 5b2 + b3 + b4 ≥ 6 log solution α1

(5) b1 + b2 ≥ 1 RUP

(6) b1 + b2 + yK1,2 ≥ 1 reification

(7) 2yK1,2
+ b1 + b2 ≥ 2 reification

(8) 5b1 + 5b2 + 5yK1,2
≥ 10 (((5) + (7))/2) · 5

(9) b3 + b4 + 5yK1,2
≥ 6 (4) + (8)

(10) yK1,2
≥ 1 RUP

(11) b3 + b4 ≥ 1 RUP

(12) b3 + b4 + yK2,2 ≥ 1 reification

(13) 2yK2,2
+ b3 + b4 ≥ 2 reification

(14) b3 + b4 + yK2,2
≥ 2 ((11) + (13))/2

(15) 5b1 + 5b2 + b3 + b4 ≥ 7 log solution α2

(16) 5b1+5b2+b3+b4+5yK1,2
+yK2,2

≥ 12 (8) + (14)

(17) 5yK1,2
+ yK2,2

≥ 7 (15) + (16), ⊥

constraint (7) corresponding to yK1,2 ⇒ (b1 + b2 ≥ 2). Conveniently, in this
toy example yK1,2 ⇐ (b1 + b2 ≥ 2) is already the clause b1 + b2 + yK1,2 ≥ 1,
so step (ii) is not needed. For the general case, we derive totalizer clauses as
explained in Sect. 4. Conceptually, we now replace 5b1 + 5b2 by 5yK1,2 + 5 to
obtain the reformulated objective Oref = b3 + b3 + 5yK1,2 + 5 with lower bound
LB = 5. The core K1 says that at least one of b1 and b2 must be true, thus
incurring a cost of 5, and yK1,2 is added to the objective to indicate if both of
them incur cost.

Since it now holds that coeff (Oref , yK1,2) + LB = 5 + 5 ≥ 7 = UB , the lit-
eral yK1,2 is hardened to 0. In order to certify this hardening step, i.e., derive
yK1,2 ≥ 1, the proof logger first derives the objective reformulation constraint
5b1 + 5b2 + b3 + b4 ≥ b3 + b4 + 5yK1,2 + 5 enforced by line (8) in Table 1.
The objective-improving and objective reformulation constraints are then added
together to get constraint (9), after which yK1,2 ≥ 1 is obtained by a RUP step.

The next SAT solver call with b3 = b4 = 0 returns as core the input clause
b3 + b4 ≥ 1, and reformulation (lines (11)–(13)) yields Oref = 5yK1,2 + yK2,2 + 6
with LB = 6. Now suppose the SAT solver finds the solution α2 with b2 = b3 =
x = 1 and all other variables set to 0, resulting in the objective-improving con-
straint (15). Since Oorig(α2) = 6 = LB , the solver terminates and reports α2 to
be optimal. To certify that this is correct, another objective reformulation con-
straint (16) is derived, after which the contradictory constraint (17) is obtained
by adding (15) and (16). This proves that solutions with cost less than 6 do not
exist.

Certified Core-Guided MaxSAT Solving 13

100 101 102 103 104

100

101

102

103

104

timeout

memout

tim
eout

m
em

out

CGSS without proof logging (s)

C
G
SS

w
it
h
pr
oo

f
lo
gg

in
g
(s
)

unweighted
weighted

Fig. 1. Running time of CGSS with and
without proof logging.

100 101 102 103 104 105

100

101

102

103

104

105

timeout

memout

CGSS running time with proof logging (s)

V
er

iP
B

ru
nn

in
g
ti
m
e
(s
)

unweighted
weighted

Fig. 2. CGSS running time compared to
time required for proof checking.

5 Experimental Evaluation

To evaluate the proof logging techniques developed in this paper, we have imple-
mented them in the state-of-the-art MaxSAT solver CGSS [22,47], which uses
the OLL algorithm and structure-sharing totalizers. We employed VeriPB [76],
extended to parse MaxSAT instances in the standard WCNF format, to verify
the certificates of correctness emitted by the certifying solver.

Our experiments were conducted on machines with an 11th Gen Intel(R)
Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each benchmark
ran exclusively on a single machine with a memory limit of 14 GB and a time
limit of 3 600 s for solving with CGSS and 36 000 s for checking the certificates
with VeriPB. As benchmarks we used all 594 weighted and 607 unweighted
instances from the complete track of the MaxSAT Evaluation 2022 [61], where
an instance (F,O) is unweighted if all coefficients coeff (O, �) are equal. The data
from our experiments can be found in [12].

Overhead of Proof Logging. To evaluate the overhead in solver running time, we
compared the standard CGSS solver [23] without proof logging (but with the
bug fixes discussed below) to CGSS with proof logging as described in this paper.
With proof logging 803 instances are solved within the resource limits, which is
3 instances less than without proof logging (see Fig. 1). Adding proof logging
slowed down CGSS by about 8.8% in the median over all solved instances. For
95% of the instances CGSS with proof logging was at most 36.2% slower. Thus,
the proof logging overhead seems perfectly manageable and should present no
serious obstacles to using proof logging in core-guided MaxSAT solvers.

Overhead of Proof Checking. To assess the efficiency of proof checking, we com-
pared the running time of CGSS with proof logging to the time taken by
VeriPB for checking the generated proofs. The instances that were not solved

14 J. Berg et al.

Table 2. Illustration of discovered bug (where yi,k should be read as yKi,k).

#iter Literals considered (wstrat = 2) Core K#iter extracted

1 {bi, ei | i = 1 . . . 5} K1 =
∑5

i=1 bi ≥ 1

2 {ei | i = 1 . . . 5} ∪ {y1,2} K2 = y1,2 + e2 + e4 ≥ 1

3 {ei | i = 1 . . . 3, 5} ∪ {y1,2, y1,3} ∪ {y2,2} K3 = y1,3 + e1 + e2 + e5 ≥ 1

4 {ei | i = 1 . . . 3} ∪ {y1,2, y1,4} ∪ {y2,2, y3,2} K4 = y1,2 + e1 + e2 ≥ 1

5 {ei | i = 1 . . . 3} ∪ {y1,4} ∪ {y2,2, y3,2, y4,2} K5 = e1 + e2 + e3 + y1,4 + y2,2 ≥ 1

6 {e3} ∪ {y1,5} ∪ {y2,3} ∪ {y3,2, y4,2, y5,2} Result is SAT

#iter Oref (after reformulation of K#iter)

0 10
(∑5

i=1 bi
)

+ 11e1 + 14e2 + 11e3 + 3e4 + 2e5 + o1 + o2

1 11e1 + 14e2 + 11e3 + 3e4 + 2e5 + 10y1,2 + o1 + o2 + 10

2 11e1 + 11e2 + 11e3 + 2e5 + 7y1,2 + 3y1,3 + 3y2,2 + o1 + o2 + 13

3 9e1 + 9e2 + 11e3 + 7y1,2 + y1,3 + 2y1,4 + 3y2,2 + 2y3,2 + o1 + o2 + 15

4 2e1 + 2e2 + 11e3 + 8y1,3 + 2y1,4 + 3y2,2 + 2y3,2 + 7y4,2 + o1 + o2 + 22

5 9e3 + 8y1,3 + 2y1,5 + y2,2 + 2y2,3 + 2y3,2 + 7y4,2 + 2y5,2 + o1 + o2 + 24

by CGSS within the resource limits were filtered out, since the running time for
checking an incomplete proof is inconclusive.

VeriPB successfully checked the proofs for 747 out of the 803 instances
solved by CGSS (see Fig. 2); 42 instances failed due to the memory limit and 14
instances failed due to the time limit. Checking the proof took about 3 times the
solving time in the median for successfully checked instances. About 87% of the
successfully checked instances were checked within 10 times the solving time.

Proof checking time compared to solver running time varies widely, but our
experiments indicate that the performance of VeriPB is sufficient in most cases,
and verification time scales linearly with the size of the proof for a majority of
the instances. However, there is room to improve VeriPB, where focus so far has
been on proof logging strength rather than performance. For the instances where
checking is 100 times slower than solving, the main bottleneck is the proof gen-
erated by the SAT solver, which could be addressed by standard techniques for
checking DRAT proofs, and checking logged solutions (when objective improving
constraints (3a) are added) could also be implemented more efficiently.

Bugs Discovered by Proof Logging. Our work on implementing proof logging in
CGSS led to the discovery of two bugs, which were also present in the solver
RC2 on which CGSS is based, but have now been fixed in CGSS in com-
mit 5526d04 and in RC2 in commit d0447c3. The bugs are due to a slightly
different implementation of OLL compared to the description in Sect. 3.

First, when a counting variable yKold ,i for a core Kold appears for the first
time in a later core Knew , the next counting variable yKold ,i+1 is added to the
reformulated objective with coefficient w

(
Knew , Onew

)
rather than w

(
Kold , Oold

)
.

The coefficient of yKold ,i+1 is then further increased when yKold ,i is found in
future cores. Second, rather than computing the upper bound UB from an actual

Certified Core-Guided MaxSAT Solving 15

solution, CGSS uses a weaker estimate UBest obtained by summing the current
lower bound and the coefficients of all literals b where coeff (Oref , b) < wstrat

(meaning that these literals were not set to 0 in the SAT solver call, and so
could potentially be true in the solution).

The bugs we detected could lead to the solver producing an overly optimistic
estimate UBest < UB . The first way this can happen is when the contributions
of counting variables yK,k in the reformulated objective are underestimated due
to too small coefficients. The second bug is when the coefficient of yKold ,i+1 is
first lowered below wstrat and then raised above this threshold again when yKold ,i

is found in a core. Then CGSS fails to assume yKold ,i+1 = 0 in future solver calls.
These bugs can result in erroneous hardening as detailed in the next example.

Example 1. Given a MaxSAT instance (F,O) with F =
{(∨5

i=1 bi

)
, (o1 ∨ o2)

}
∪

{bi ∨ ei | i = 1, . . . , 5} and O =
(∑5

i=1 10 · bi

)
+ 11 · e1 + 14 · e2 + 11 · e3 + 3 · e4 +

2 · e5 + o1 + o2, assume the stratification bound is wstrat = 2. Table 2 displays
a possible CGSS run for this instance, except that for simplicity we assume
one core extraction per iteration and no use of any other heuristics. The upper
half of the table lists the variables set to 0 in solver calls, the extracted core,
and the lower bound derived from it. The lower half of the table provides the
reformulated objective. Even though the coefficient of yK1,3 is increased to 8
after the fourth core, this variable is not set to 0 in subsequent iterations, which
allows the solver to finish the stratification level after extracting 6 cores with a
solution that sets to true the variables b1, b2, b3, b5, e4, o1, o2, yK2,2 and yK1,i for
i = 1, . . . , 4, and all other variables to false. The cost of this solution is 45.

Now CGSS would incorrectly estimate UBest = LB + 4 = 28, since yK1,3

and yK2,2 (abbreviated as y1,3 and y2,2 in the table) both have coefficient 1 in
the current reformulated objective. This is lower than the cost 45 of the solution
found (and even than the optimum 36), and erroneously allows hardening—
which considers yK1,3 with the correct coefficient 8—to fix yK1,3 = 0, even though
b1, b2 and b3 (and hence also yK1,3) are true in every minimal-cost solution.

In our computational experiments there were cases of faulty hardening, but
all incorrectly fixed values happened to agree with some optimal solution and so
we never observed incorrect results. Proof logging detected the problem, however,
since the derivations of the buggy hardening steps failed during proof checking.
Interestingly, what proof logging did not turn up was any examples of mistaken
claims Oorig ≤ UBest − 1 when the cost of a found solution was estimated. The
issue with mistaken estimates due to faulty stratification was instead discovered
while analyzing and fixing the hardening bug. The moral of this is that even
if all results are certified as correct, this does not certify that the code is free
from bugs that have not yet manifested themselves. However, proof logging still
guarantees that even if the solver would have undiscovered bugs, we can always
trust computed results for which the accompanying proofs pass verification.

16 J. Berg et al.

6 Concluding Remarks

In this work, we develop pseudo-Boolean proof logging techniques for core-guided
MaxSAT solving and implement them in the solver CGSS [47] with support
for the full range of sophisticated reasoning techniques it uses. To the best of
our knowledge, this is the first time a state-of-the-art MaxSAT solver has been
enhanced to output machine-verifiable proofs of correctness. We have made a
thorough evaluation on benchmarks from the MaxSAT Evaluation 2022 using the
VeriPB proof checker [17,42], and find that proof logging overhead is perfectly
manageable and that proof verification time, while leaving room for improvement,
is definitely practically feasible. Our work also showcases the benefit of proof
logging as a debugging tool—erroneous proofs produced by CGSS revealed two
subtle bugs in the solver that previous extensive testing had failed to uncover.

Regarding proof verification time, further investigation is needed into the rare
cases where verification is much slower (say, more than a factor 10) than solving.
There are reasons to believe, though, that this is not a problem of MaxSAT proof
logging per se, but rather is explained by features not yet added to VeriPB,
which is a tool currently undergoing very active development. So far, the proof
checker has been optimized for other types of reasoning than the clausal reverse
unit propagation (RUP) steps that dominate SAT proofs. Also, VeriPB lacks
the ability to trim proofs during checking as in [44]. Finally, introducing a binary
proof format in addition to plain-text proofs would be another way to boost
performance of proof checking. But these are matters of engineering rather than
research, and can be taken care of once the proof logging technology as such has
been developed and has proven its worth.

The focus of this work is on core-guided MaxSAT solving, but we would like
to extend our techniques to solvers using linear SAT-UNSAT (LSU) solving (such
as Pacose [68]) and implicit hitting set (IHS) search (such as MaxHS [28,29]).
Although there are certainly nontrivial technical challenges that will need to be
overcome, we are optimistic that our work paves the way towards a unified proof
logging system for the full range of modern MaxSAT solving approaches. Going
beyond MaxSAT, it would also be interesting to extend VeriPB proof logging
to pseudo-Boolean solvers using core-guided search [30] or IHS [73,74], and per-
haps even to similar techniques in constraint programming [36] and answer set
programming [5].

Acknowledgements. This work was partly carried out while some of the authors
were visiting the Simons Institute for the Theory of Computing at UC Berkeley for the
extended reunion of the program “Satisfiability: Theory, Practice, and Beyond” during
the spring of 2023. We also benefited greatly from the Dagstuhl Seminar 22411 “The-
ory and Practice of SAT and Combinatorial Solving”. Additionally, we acknowledge
several inspirational discussions on certifying solvers and proof logging with, among
others, Ambros Gleixner, Stephan Gocht, and Ciaran McCreesh. The computational
experiments were enabled by resources provided by LUNARC at Lund University.

Jeremias Berg was fully supported by the Academy of Finland under grant 342145.
Bart Bogaerts and Dieter Vandesande were supported by Fonds Wetenschappelijk

Certified Core-Guided MaxSAT Solving 17

Onderzoek – Vlaanderen (project G070521N) and by the EU ICT-48 2020 project TAI-
LOR (GA 952215). Jakob Nordström was supported by the Swedish Research Council
grant 2016-00782 and the Independent Research Fund Denmark grant 9040-00389B.
Andy Oertel was supported by the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References

1. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years
of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimiza-
tion, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38189-8 18

2. Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Metamorphic test-
ing of constraint solvers. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp.
727–736. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 46

3. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C., Schweitzer, P.: An introduc-
tion to certifying algorithms. IT - Inf. Technol. Methoden Innov. Anwendungen
Inform. Informationstechnik 53(6), 287–293 (2011)

4. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI 2015), pp. 2677–2683. AAAI Press (2015)

5. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: Technical Communications of the 28th International Con-
ference on Logic Programming (ICLP 2012). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 17, pp. 211–221 (2012)

6. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 9

7. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial
MaxSAT. Artif. Intell. 250, 37–57 (2017)

8. Bacchus, F., Järvisalo, M., Martins, R.: Maximum satisfiabiliy. In: Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, 2nd edn., vol. 336, pp. 929–991. IOS Press
(2021)

9. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8 8

10. Barth, P.: A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean
optimization. Technical report MPI-I-95-2-003, Max-Planck-Institut für Informatik
(1995)

11. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI 1997), pp. 203–208 (1997)

12. Berg, J., Bogaerts, B., Nordström, J., Oertel, A., Vandesande, D.: Experimental
repository for “Certified core-guided MaxSAT solving” (2023). https://doi.org/10.
5281/zenodo.7709687

13. Berg, J., Järvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solv-
ing. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 652–670. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66158-2 42

https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-319-98334-9_46
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.5281/zenodo.7709687
https://doi.org/10.5281/zenodo.7709687
https://doi.org/10.1007/978-3-319-66158-2_42

18 J. Berg et al.

14. Biere, A.: Tracecheck (2006). http://fmv.jku.at/tracecheck/
15. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-

bility, Frontiers in Artificial Intelligence and Applications, 2nd edn., vol. 336. IOS
Press (2021)

16. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming–a
look back from the other side of the tipping point. Ann. Oper. Res. 149(1), 37–41
(2007)

17. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified symmetry and
dominance breaking for combinatorial optimisation. In: Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI 2022), pp. 3698–3707 (2022)

18. Bogaerts, B., McCreesh, C., Nordström, J.: Solving with provably correct results:
beyond satisfiability, and towards constraint programming (2022). Tutorial at the
28th International Conference on Principles and Practice of Constraint Program-
ming. Slides available at http://www.jakobnordstrom.se/presentations/

19. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-SAT. Artif. Intell. 171(8–9),
606–618 (2007)

20. Buss, S.R., Nordström, J.: Proof complexity and SAT solving. In: Biere et al. [15],
chap. 7, pp. 233–350 (2021)

21. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp.
75–85. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0 6

22. Certifying version of the CGSS core-guided MaxSAT solver with structure sharing.
https://gitlab.com/MIAOresearch/software/certified-cgss

23. CGSS, a core guided Max-SAT-algorithm using structure sharing technique for
enhanced cardinality constraints, built on RC2 and PySAT. https://bitbucket.org/
coreo-group/cgss/

24. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discret. Appl. Math. 18(1), 25–38 (1987)

25. Cook, W., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach
for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–
344 (2013)

26. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 14

27. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolu-
tion proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 118–135. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 7

28. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 13

29. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 21

30. Devriendt, J., Gocht, S., Demirović, E., Nordström, J., Stuckey, P.: Cutting to
the core of pseudo-Boolean optimization: combining core-guided search with cut-
ting planes reasoning. In: Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI 2021), pp. 3750–3758 (2021)

31. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Sat-
isfiab. Boolean Model. Comput. 2(1–4), 1–26 (2006)

http://fmv.jku.at/tracecheck/
http://www.jakobnordstrom.se/presentations/
https://doi.org/10.1007/978-3-642-11269-0_6
https://gitlab.com/MIAOresearch/software/certified-cgss
https://bitbucket.org/coreo-group/cgss/
https://bitbucket.org/coreo-group/cgss/
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-40627-0_21

Certified Core-Guided MaxSAT Solving 19

32. Eifler, L., Gleixner, A.: A computational status update for exact rational mixed
integer programming. In: Singh, M., Williamson, D.P. (eds.) IPCO 2021. LNCS,
vol. 12707, pp. 163–177. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-73879-2 12

33. Elffers, J., Gocht, S., McCreesh, C., Nordström, J.: Justifying all differences using
pseudo-Boolean reasoning. In: Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI 2020), pp. 1486–1494 (2020)

34. Filmus, Y., Mahajan, M., Sood, G., Vinyals, M.: MaxSAT resolution and subcube
sums. In: Pulina, L., Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 295–311.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 21

35. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814948 25

36. Gange, G., Berg, J., Demirović, E., Stuckey, P.J.: Core-guided and core-boosted
search for CP. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296,
pp. 205–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-
4 14

37. Gillard, X., Schaus, P., Deville, Y.: SolverCheck: declarative testing of constraints.
In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 565–582. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30048-7 33

38. Gocht, S., Martins, R., Nordström, J., Oertel, A.: Certified CNF translations for
pseudo-Boolean solving. In: Proceedings of the 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 236, pp. 16:1–16:25 (2022)

39. Gocht, S., McBride, R., McCreesh, C., Nordström, J., Prosser, P., Trimble, J.: Cer-
tifying solvers for clique and maximum common (connected) subgraph problems.
In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 338–357. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58475-7 20

40. Gocht, S., McCreesh, C., Nordström, J.: Subgraph isomorphism meets cutting
planes: solving with certified solutions. In: Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 1134–1140 (2020)

41. Gocht, S., McCreesh, C., Nordström, J.: An auditable constraint programming
solver. In: Proceedings of the 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 235, pp. 25:1–25:18 (2022)

42. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: Proceedings of the 35th AAAI Conference on Artificial Intelli-
gence (AAAI 2021), pp. 3768–3777 (2021)

43. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of the Conference on Design, Automation and Test in Europe
(DATE 2003), pp. 886–891 (2003)

44. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: Proceedings of the 13th International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2013), pp. 181–188 (2013)

45. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended reso-
lution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 24

46. Ignatiev, A., Morgado, A., Marques-Silva, J.P.: RC2: an efficient MaxSAT solver.
J. Satisfiab. Boolean Model. Comput. 11(1), 53–64 (2019)

https://doi.org/10.1007/978-3-030-73879-2_12
https://doi.org/10.1007/978-3-030-73879-2_12
https://doi.org/10.1007/978-3-030-51825-7_21
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/978-3-030-58942-4_14
https://doi.org/10.1007/978-3-030-58942-4_14
https://doi.org/10.1007/978-3-030-30048-7_33
https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.1007/978-3-642-38574-2_24

20 J. Berg et al.

47. Ihalainen, H., Berg, J., Järvisalo, M.: Refined core relaxation for core-guided
MaxSAT solving. In: 27th International Conference on Principles and Practice
of Constraint Programming (CP 2021). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 210, pp. 28:1–28:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021)

48. Ihalainen, H., Berg, J., Järvisalo, M.: Clause redundancy and preprocessing in
maximum satisfiability. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR
2022. LNCS, vol. 13385, pp. 75–94. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-10769-6 6

49. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). Preliminary version in CCC 1999

50. Karpinski, M., Piotrów, M.: Competitive sorter-based encoding of PB-constraints
into SAT. In: Proceedings of Pragmatics of SAT. EPiC Series in Computing, vol.
59, pp. 65–78. EasyChair (2018)

51. Karpinski, M., Piotrów, M.: Encoding cardinality constraints using multiway merge
selection networks. Constraints 24(3–4), 234–251 (2019)

52. Kraiczy, S., McCreesh, C.: Solving graph homomorphism and subgraph isomor-
phism problems faster through clique neighbourhood constraints. In: Proceedings
of the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021),
pp. 1396–1402 (2021)

53. Larrosa, J., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A framework
for certified Boolean branch-and-bound optimization. J. Autom. Reason. 46(1),
81–102 (2011)

54. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiab. Boolean Model.
Comput. 7, 59–64 (2010)

55. Leivo, M., Berg, J., Järvisalo, M.: Preprocessing in incomplete MaxSAT solving.
In: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI
2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 347–354.
IOS Press (2020)

56. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfi-
ability, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 903–927.
IOS Press (2021)

57. Li, C., Xu, Z., Coll, J., Manyà, F., Habet, D., He, K.: Boosting branch-and-bound
MaxSAT solvers with clause learning. AI Commun. 35(2), 131–151 (2022)

58. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343
(2011)

59. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999). Preliminary version in
ICCAD 1996

60. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 39

61. MaxSAT evaluation 2022 (2022). https://maxsat-evaluations.github.io/2022
62. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.

Comput. Sci. Rev. 5(2), 119–161 (2011)
63. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-

nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 41

https://doi.org/10.1007/978-3-031-10769-6_6
https://doi.org/10.1007/978-3-031-10769-6_6
https://doi.org/10.1007/978-3-319-10428-7_39
https://maxsat-evaluations.github.io/2022
https://doi.org/10.1007/978-3-319-10428-7_41

Certified Core-Guided MaxSAT Solving 21

64. Morgado, A., Ignatiev, A., Bonet, M.L., Marques-Silva, J., Buss, S.: DRMaxSAT
with MaxHS: first contact. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol.
11628, pp. 239–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24258-9 17

65. Morgado, A., Marques-Silva, J.: On validating Boolean optimizers. In: Proceedings
of the 23rd IEEE International Conference on Tools with Artificial Intelligence,
(ICTAI 2011), pp. 924–926 (2011)

66. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001), pp. 530–535 (2001)

67. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI 2014), pp. 2717–2723. AAAI Press (2014)

68. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8 3

69. Py, M., Cherif, M.S., Habet, D.: Towards bridging the gap between SAT and Max-
SAT refutations. In: Proceedings of the 32nd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2020), pp. 137–144 (2020)

70. Py, M., Cherif, M.S., Habet, D.: A proof builder for Max-SAT. In: Li, C.-M., Manyà,
F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 488–498. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-80223-3 33

71. Py, M., Cherif, M.S., Habet, D.: Proofs and certificates for Max-SAT. J. Artif.
Intell. Res. 75, 1373–1400 (2022)

72. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2. Elsevier, Amsterdam (2006)

73. Smirnov, P., Berg, J., Järvisalo, M.: Improvements to the implicit hitting set app-
roach to pseudo-Boolean optimization. In: Proceedings of the 25th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 236, pp. 13:1–13:18
(2022)

74. Smirnov, P., Berg, J., Järvisalo, M.: Pseudo-Boolean optimization by implicit hit-
ting sets. In: Proceedings of the 27th International Conference on Principles and
Practice of Constraint Programming (CP 2021). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 210, pp. 51:1–51:20 (2021)

75. Vandesande, D., De Wulf, W., Bogaerts, B.: QMaxSATpb: a certified MaxSAT
solver. In: Gottlob, G., Inclezan, D., Maratea, M. (eds.) LPNMR 2022. LNCS, vol.
13416, pp. 429–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15707-3 33

76. VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/
software/VeriPB

https://doi.org/10.1007/978-3-030-24258-9_17
https://doi.org/10.1007/978-3-030-24258-9_17
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-030-80223-3_33
https://doi.org/10.1007/978-3-030-80223-3_33
https://doi.org/10.1007/978-3-031-15707-3_33
https://doi.org/10.1007/978-3-031-15707-3_33
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

22 J. Berg et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Certified Core-Guided MaxSAT Solving
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions
	1.3 Outline of This Paper

	2 Preliminaries
	3 The OLL Algorithm for Core-Guided MaxSAT Solving
	4 Proof Logging for the OLL Algorithm for MaxSAT
	5 Experimental Evaluation
	6 Concluding Remarks
	References

