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We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus

resolution (PCR) on proof degree, and hence by [Impagliazzo et al. ’99] also on proof size. [Alekhnovich and

Razborov ’03] established that if the clause-variable incidence graph of a CNF formula F is a good enough

expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques

in [AR03] to show that if one can “cluster” clauses and variables in a way that “respects the structure” of

the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an

expander. We also show how a weaker structural condition is sufficient to obtain lower bounds on width for

the resolution proof system, and give a unified treatment that highlights similarities and differences between

resolution and polynomial calculus lower bounds.

As a corollary of our main technical theorem, we prove that the functional pigeonhole principle (FPHP)

formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers

an open question in [Razborov ’02], and also implies that the standard CNF encoding of the FPHP formulas

require exponential proof size in polynomial calculus resolution. Thus, while onto-FPHP formulas are easy for

polynomial calculus, as shown in [Riis ’93], both FPHP and onto-PHP formulas are hard even when restricted

to bounded-degree expanders.
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1 INTRODUCTION
In one sentence, propositional proof complexity studies how hard it is to certify the unsatisfiability

of formulas in conjunctive normal form (CNF). In its most general form, this is the question of

whether coNP can be separated from NP or not, and as such it still appears almost completely out

of reach. However, if one instead focuses on concrete proof systems, which can be thought of as

restricted models of nondeterministic computation, then fruitful study is possible.
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1.1 Resolution and Polynomial Calculus
Perhaps the most well-studied proof system in proof complexity is resolution [8], in which one

derives new disjunctive clauses from a CNF formula until an explicit contradiction is reached,

and for which numerous exponential lower bounds on proof size have been shown (starting with

[10, 18, 40]). Most of these lower bounds can be established by instead studying the width of proofs,

i.e., the size of a largest clause appearing in the proofs, and arguing that any resolution proof for a

certain formula must contain a large clause. It then follows from a celebrated paper by Ben-Sasson

and Wigderson [7] that any resolution proof must also consist of very many clauses, and research

since this paper has led to a well-developed machinery for showing width lower bounds, and hence

also size lower bounds.

The focus of the current paper is the more general proof system polynomial calculus resolution
(PCR). This proof system was introduced by Clegg et al. [11] in a slightly weaker form that is

usually referred to as polynomial calculus (PC) and was later extended by Alekhnovich et al. [1].

In PC and PCR clauses are translated to multilinear polynomials over some (fixed) field F, and
a CNF formula F is shown to be unsatisfiable by proving that the constant 1 lies in the ideal

generated by the polynomials corresponding to the clauses of F . Here the size of a proof is

measured as the number of monomials in a proof when all polynomials are expanded out as linear

combinations of monomials, and the width of a clause corresponds to the (total) degree of the
polynomial representing the clause. Briefly, the difference between PC and PCR is that the latter

proof system has separate formal variables for positive and negative literals over the same variable.

Thanks to this, one can encode wide clauses into polynomials compactly regardless of the sign of

the literals in the clauses, which allows PCR to simulate resolution efficiently. With respect to the

degree measure PC and PCR are exactly the same, and furthermore the degree needed to prove in

polynomial calculus that a formula is unsatisfiable is at most the width required in resolution.

In a work that served, interestingly enough, as a precursor to [7], Impagliazzo et al. [20] showed

that strong lower bounds on the degree of PC proofs are sufficient to establish strong size lower

bounds. The same argument works for PCR, and hence any lower bound on proof size obtained via

a degree lower bound applies to both PC and PCR. In this paper, we will therefore be somewhat

sloppy in distinguishing between the two proof systems, sometimes writing “polynomial calculus”

to refer to both systems when the results apply to both PC and PCR.

In contrast to the situation for resolution after [7], the paper [20] has not been followed by a

corresponding development of a generally applicable machinery for proving degree lower bounds.

For fields of characteristic distinct from 2 it is sometimes possible to obtain lower bounds by

doing an affine transformation from {0, 1} to the “Fourier basis” {−1,+1}, an idea that seems to

have appeared first in [9, 17]. For fields of arbitrary characteristic Alekhnovich and Razborov [2]

developed a technique for general systems of polynomial equations, which when restricted to the

standard encoding of CNF formulas F yields that polynomial calculus proofs require high degree

if the corresponding bipartite clause-variable incidence graphs G (F ) are good enough expanders.

Unfortunately, there are many formula families for which this is not true. One can have a constraint

satisfaction problemwhere the constraint-variable incidence graph is an expander—say, for instance,

for an unsatisfiable set of linear equations mod 2—but where each constraint is then translated into

several clauses when encoded into CNF, meaning that the clause-variable incidence graphG (F )
will no longer be expanding. For some formulas this limitation is inherent—it is not hard to see that

an inconsistent system of linear equations mod 2 is easy to refute in polynomial calculus over F2,
and so good expansion for the constraint-variable incidence graph should not in itself be sufficient

to imply hardness in general—but in other cases it would seem that some kind of expansion of this

sort should still be enough, “morally speaking,” to guarantee that the corresponding CNF formulas
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are hard.
1
Formalizing this intuition seems tricky, however, and although the method in [2] appears

to be very powerful, the only papers we are aware of that successfully use and elaborate on this

framework are [14, 15].

1.2 Pigeonhole Principle Formulas
One important direction in proof complexity, which is the reason research in this area was initiated

by Cook and Reckhow [12], is to prove superpolynomial lower bounds on proof size for increasingly

stronger propositional proof systems. For proof systems where such lower bounds have already

been obtained, however, such as resolution and polynomial calculus, a somewhat orthogonal

research direction has been to try to gain a better understanding of the strengths and weaknesses

of a given method of reasoning by studying different combinatorial principles and determining

how hard they are to prove for the corresponding proof system.

It seems fair to say that by far the most extensively studied such combinatorial principle is the

pigeonhole principle. This principle is encoded into CNF as unsatisfiable formulas claiming that

m pigeons can be mapped in a one-to-one fashion into n holes form > n, but there are several
choices exactly how to do this encoding. The most basic pigeonhole principle (PHP) formulas have
clauses saying that every pigeon gets at least one pigeonhole and that no hole contains two pigeons.

While these formulas are already unsatisfiable form ≥ n + 1, they do not a priori rule out that there
might be “fat” pigeons residing in several holes. The functional pigeonhole principle (FPHP) formulas
perhaps correspond more closely to our intuitive understanding of the pigeonhole principle in that

they also contain functionality clauses specifying that every pigeon gets exactly one pigeonhole

and not more. Another way of making the basic PHP formulas more constrained is to add onto
clauses requiring that every pigeonhole should get a pigeon, yielding so-called onto-PHP formulas.
Finally, the most restrictive encoding, and hence the hardest one when it comes to proving lower

bounds, are the onto-FPHP formulas containing both functionality and onto clauses, i.e., saying that

the mapping from pigeons to pigeonholes is a perfect matching. Razborov’s survey [32] gives a

detailed account of these different flavours of the pigeonhole principle formulas and results for

them with respect to various proof systems—we just quickly highlight some facts relevant to this

paper below.

For the resolution proof system there is not much need to distinguish between the different

PHP versions discussed above. The lower bound by Haken [18] for formulas with m = n + 1

pigeons can be made to work also for onto-FPHP formulas, and more recent works by Raz [29] and

Razborov [31, 33, 34] show that the formulas remain exponentially hard (measured in the number

of pigeonholes n) even for arbitrarily many pigeonsm.

Interestingly enough, for polynomial calculus the story is very different. The first degree lower

bounds were proven by Razborov [30], but for a different encoding than the standard translation

from CNF, since translating wide clauses yields initial polynomials of high degree. Alekhnovich

and Razborov [2] proved lower bounds for a 3-CNF version of the pigeonhole principle, from which

it follows that the standard CNF encoding requires proofs of exponential size. However, as shown

by Riis [36] the onto-FPHP formulas withm = n + 1 pigeons are easy for polynomial calculus. And

1
In a bit more detail, what is shown in [2] is that if the constraint-variable incidence graph for a set of polynomial equations

is a good expander, and if these polynomials have high immunity—i.e., do not imply other polynomials of significantly lower

degree—then proving in polynomial calculus that this set of polynomial equations is inconsistent requires high degree. CNF

formulas automatically have maximal immunity since a clause translated into a polynomial does not have any consequences

of degree lower than the width of the clause in question, and hence expansion of the clause-variable incidence graph is

sufficient to imply hardness for polynomial calculus. Any polynomial encoding of a linear equation mod 2 has a low-degree

consequence over F2, though—namely, the linear equation itself—and this is why [2] (correctly) fails to prove lower bounds

in this case.
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while the encoding in [30] also captures the functionality restriction in some sense, it has remained

open whether the standard CNF encoding of functional pigeonhole principle formulas translated to

polynomials is hard (this question has been highlighted, for instance, in Razborov’s open problems

list [35]).

Another way of modifying the pigeonhole principle is to restrict the choices of pigeonholes for

each pigeon by defining the formulas over a bipartite graph H = (U
.
∪ V ,E) with |U | = m and

|V | = n and requiring that each pigeon u ∈ U goes to one of its neighbouring holes in N (u) ⊆ V . If

the graph H has constant left degree, the corresponding graph pigeonhole principle formula has

constant width and a linear number of variables, which makes it possible to apply [7, 20] to obtain

exponential proof size lower bounds from linear width/degree lower bounds. A careful reading

of the proofs in [2] reveals that this paper establishes linear polynomial calculus degree lower

bounds (and hence exponential size lower bounds) for graph PHP formulas, and in fact also graph

onto-PHP formulas, over constant-degree expanders. Razborov lists as one of the open problems

in [32] whether this holds also for graph FPHP formulas, i.e., with functionality clauses added, from

which exponential lower bounds on polynomial calculus proof size for the general FPHP formulas

would immediately follow.

1.3 Our Results
We revisit the technique developed in [2] for proving polynomial calculus degree lower bounds

for CNF formulas. Instead of studying the standard bipartite clause-variable incidence graph G (F )
of a CNF formula F (with clauses on the left, variables on the right, and edges encoding that a

variable occurs in a clause) we consider graphs G ′ that can be constructed by clustering several

clauses and/or variables into single vertices, reflecting the structure of the encoded combinatorial

principle. The edges in this new graph G ′ are the ones induced by the original graph G (F ) in the

natural way, i.e., there is an edge from a left cluster to a right cluster in G ′ if any clause in the

left cluster has an edge to any variable in the right cluster in G (F ). We remark that the idea of

clustering in itself is not new—it is already implicit in, for instance, the resolution lower bounds

in [7] for Tseitin formulas (essentially a special form of unsatisfiable linear equations mod 2) and

graph PHP formulas, as well as in the graph PHP lower bound for polynomial calculus in [2], and

it is also used in the papers [14, 15] building on [2]. But whereas in the above works the clustering

was done in a instance-specific way, we present a more general, abstract setting. We also consider

any input sets of polynomials, not just polynomials obtained from translations of CNF formulas.

In this more general setting we then show that if the clustering is done in the right way, the

proof strategy in [2] can still be made to work. If the clustered graphG ′ is a good enough expander

(for a certain technical twist of the definition of expander that is described in Section 4.1), then

this yields strong polynomial calculus degree lower bounds. It is clear that this cannot always

work—as already discussed above, any inconsistent system of linear equations mod 2 is easy to

refute in polynomial calculus over F2, even though for a random instance of this problem the

clauses encoding each linear equation can be clustered to yield an excellent expander G ′. Very
informally (and somewhat incorrectly) speaking, the clustering should be such that if a cluster of

polynomials P ′ on the left is a neighbour of a variable cluster V on the right, then there should

exist an assignment ρ to V such that all polynomials in P ′ vanish under ρ and such that for every

polynomial outside of P ′ it either vanishes under ρ or is left completely untouched by ρ. Also, it
turns out to be helpful not to insist that the clustering of variables on the right should be a partition,

but that we should allow the same variable to appear in several clusters if needed (as long as the

number of clusters for each variable is bounded).
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This extension of the lower bound method in [2] makes it possible to present previously obtained

polynomial calculus degree lower bounds in [2, 15, 25] in a clean, unified framework.
2
Moreover, it

allows us to prove the following new results:

(1) If a bipartite graph H = (U
.
∪V ,E) with |U | =m and |V | = n is a boundary expander (a.k.a.

unique-neighbour expander), then the graph FPHP formula over H requires proofs of linear

polynomial calculus degree, and hence exponential polynomial calculus size.

(2) Since FPHP formulas can be turned into graph FPHP formulas by hitting them with a

restriction, and since restrictions can only decrease proof size, it follows that FPHP formulas

require proofs of exponential size in polynomial calculus.

This fills in the last missing pieces in our understanding of the different flavours of pigeonhole

principle formulas with n + 1 pigeons and n holes for polynomial calculus. Namely, while onto-

FPHP formulas are easy for polynomial calculus, both FPHP formulas and onto-PHP formulas are

hard even when restricted to expander graphs.

We remark that after the preliminary version of this paper [26] was published, we have learned

that a similar lower bound for FPHP formulas was obtained in [42]. We also note that a different,

more abstract, treatment of the Alekhnovich–Razborov method was independently developed by

Filmus [13]. The focus of [13] appears to be mainly on constructing different and more explicit

proofs for the key technical lemmas in [2], however, and this work does not obtain any new lower

bound results.

1.4 Organization of This Paper
The rest of this paper is organized as follows. We start by reviewing some preliminaries in Section 2,

and then give a reader-friendly exposition of our main technical contributions in Section 3 by

explaining how lower bounds can be obtained for resolution and polynomial calculus by construct-

ing bipartite graphs representing the input (generalizing the concept of clause-variable incidence

graph) and proving that these graphs satisfy simple combinatorial properties. We give a more

formal treatment of our extension of the Alekhnovich–Razborov method in Section 4, including all

technical details and proofs. In Section 5, we show how this method can be used to rederive some

previous polynomial calculus degree lower bounds as well as to obtain new degree and size lower

bounds for functional (graph) PHP formulas. We conclude in Section 6 by discussing some possible

directions for future research.

2 PRELIMINARIES
In this section we give a brief overview of the required proof complexity background (referring the

reader to, for instance, the survey articles [27, 37] or the book [23] for a more detailed treatment),

and then discuss some concepts from algebra that we will also need.

2.1 Proof Complexity Basics
A literal over a Boolean variable x is either the variable x itself (a positive literal) or its negation ¬x
or x (a negative literal). We define x = x . We identify 0 with true and 1 with false. We remark

that this is the opposite of the standard convention in proof complexity, but it is a more natural

choice in the context of polynomial calculus, where “evaluating to true” means “vanishing.” A clause
C = a1 ∨ · · · ∨ ak is a disjunction of literals. A CNF formula F = C1 ∧ · · · ∧Cm is a conjunction of

clauses. We think of clauses and CNF formulas as sets, so that order is irrelevant and there are no

2
However, the work [14] mentioned earlier has a problem-specific and non-standard notion of degree that will not fit easily

into our general setting without sacrificing the simplicity that is the main goal of our constructions, and for this reason we

will not discuss it further in this paper.
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repetitions. The width W (C ) of a clause C is the number of literals |C | in it, and the width W (F ) of
a formula F is the maximum width of any clause in F . A k-CNF formula has all clauses of width

at most k , where we usually assume k to be some fixed constant.

Definition 2.1 (Resolution). A resolution refutation π : F ⊢⊥ of a CNF formula F (also referred to

as a resolution proof for F ) is an ordered sequence of clauses π = (C1, . . . ,Cτ ), such thatCτ = ⊥ is

the contradictory empty clause not containing any literals, and such that each clause Ci , 1 ≤ i ≤ τ ,
is

• an axiom clause C ∈ F (an axiom) or

• a clause derived from two previous clauses in the sequence by the resolution rule B∨x C∨x
B∨C .

The length (or size) L(π ) of a refutation π = (C1, . . . ,Cτ ) is the number of clauses τ and the

width W (π ) is the maximal width of any clause in π . Taking the minimum over all resolution

refutations of F , we define the length LR (F ⊢⊥) and widthWR (F ⊢⊥) of refuting F in resolution.

It is a standard fact that resolution is sound and complete; i.e., there is a resolution refutation of

a CNF formula F if and only if F is unsatisfiable.

When using algebraic proof systems to refute unsatisfiable CNF formulas, a clause

C =
∨
x ∈L+

x ∨
∨
y∈L−

y (2.1)

can be translated to the polynomial

pPC (C ) =
∏
x ∈L+

x ·
∏
y∈L−

(1 − y) (2.2)

and a CNF formula is translated to the set of polynomials representing its clauses. Clearly, a CNF

formula F is satisfiable if and only if the set of polynomials

{
pPC (C )

���C ∈ F
}
have a common

root. We will also be interested in a setting where we have special variables x ,y, . . . representing
negated literals, where we emphasize that x and x are viewed as distinct formal variables. Using

such variables we can translate the clause C in (2.1) to the monomial

pPCR (C ) =
∏
x ∈L+

x ·
∏
y∈L−

y . (2.3)

In what follows, a monomialm is a product of variables and a term t is a monomial multiplied by

an arbitrary non-zero field element. We write Vars(C ) and Vars(m) to denote the set of all variables
appearing in a clause C or monomial (or term)m, respectively and extend this notation to CNF

formulas and polynomials by taking unions.

In polynomial calculus resolution, we are given a set of multivariate polynomials P from a poly-

nomial ring F[x ,x ,y,y, . . .] over some fixed field F, and the goal is to prove that these polynomials

do not have a common {0, 1}-valued root. We will not have to worry about what field F is, since
the results in this paper hold for all fields F regardless of characteristic.

Definition 2.2 (Polynomial calculus resolution (PCR) [1, 11]). A polynomial calculus resolution (PCR)
refutation π : P ⊢⊥ of a set of polynomials P (also referred to as a PCR proof for P) over a field F is
an ordered sequence of polynomials π = (p1, . . . ,pτ ), such that pτ = 1 and each line pi , 1 ≤ i ≤ τ ,
is either

• a polynomial p ∈ P (an axiom);

• a Boolean axiom x2 − x or complementarity axiom x + x − 1 for any variable x ;
• a polynomial obtained from one or two previous polynomials in the sequence by linear
combination q r

αq+βr or multiplication q
xq for any α , β ∈ F and any variable x .
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If we drop complementarity axioms and only allow variables x without bars, then the proof system

is called polynomial calculus (PC).
The size S(π ) of a PC/PCR refutation π = (p1, . . . ,pτ ) is the number of monomials in π (counted

with repetitions)
3
when all polynomials are expanded out as linear combinations of monomials,

the degree Deg (π ) is the maximal degree of any monomial appearing in π , and the length L(π )
is the number τ of polynomials in π . Taking the minimum over all PCR refutations of a set of

polynomials P, we define the size SPCR (P ⊢⊥), degree DegPCR (P ⊢⊥), and length LPCR (P ⊢⊥) of
refuting P in PCR (and analogously for PC).

We use the notation ⟨p1, . . . ,pm⟩ for the ideal generated by the polynomials pi , i ∈ [m]. That is,

⟨p1, . . . ,pm⟩ is the minimal subset of polynomials containing all pi that is closed under addition

and multiplication by any polynomial. One way of viewing a polynomial calculus (PC or PCR)

refutation is as a calculation in the ideal generated by the polynomials in P together with the

Boolean and (for PCR) complementarity axioms. It can be shown that such an ideal contains 1 if

and only if the polynomials in P do not have a common {0, 1}-valued root.

A restriction ρ on a CNF formula F is a partial assignment to the variables of F . We use dom(ρ)
to denote the set of variables assigned by ρ. In a restricted formula F ↾ρ all clauses satisfied by ρ
are removed and all other clauses have falsified literals removed. For a polynomial p, restricting
by ρ yields a polynomial p↾ρ where all terms with a literal set to 0 are removed and in all other

terms the literals set to 1 are removed. It is not hard to see that if π is a PC (or PCR) refutation of P,

then π↾ρ is a PC (or PCR) refutation of P↾ρ , and this restricted refutation has at most the same

size, degree, and length as the original refutation.

2.2 Some Facts About Polynomial Calculus
As mentioned in the introduction, we have Deg

PCR
(F ⊢⊥) = Deg

PC
(F ⊢⊥) for any CNF formula F .

More generally, if we take any set of polynomials P in F[x ,x ,y,y, . . .] and replace all occurrences

of x by (1 − x ) to obtain a set of polynomials P+ in F[x ,y, . . .], then it holds that Deg
PCR

(P ⊢⊥) =
Deg

PCR
(P+ ⊢ ⊥) = Deg

PC
(P+ ⊢ ⊥). It is not hard to see that PCR can simulate PC in the same

degree, since PCR is strictly more expressive, and in the other direction one can essentially take

any PCR refutation of P and make substitutions of x by (1 − x ) everywhere to obtain a valid PC

refutation of P+. This might cause the number of monomials to blow up exponentially, but the

degree remains the same. Hence, we can drop the subscript from the degree measure notation.

For any set of polynomials P of degreeDeg (P) we have the following relation between refutation
size and refutation degree (which was originally proven for PC but the proof of which also works

for PCR).

Theorem 2.3 ([20]). Let P be a set of polynomials of degree Deg (P) over n variables such that
there is no {0, 1}-assignment for which all polynomials p ∈ P evaluate to 0. Then it holds that

SPCR (P ⊢⊥) = exp
*
,
Ω *
,

(
Deg (P ⊢⊥) − Deg (P)

)
2

n
+
-
+
-
.

It follows from this theorem that in order to establish strong lower bounds on PCR proof size

for sets of polynomials P of bounded degree Deg (P) = O(1), it is sufficient to prove strong lower

bounds on the PC degree of any proof of unsatisfiability. All the lower bounds presented in this

paper are possible to obtain by studying (polynomials translations of) k-CNF formulas for k = O(1),
using restrictions to reduce the width in the case when the original formulas have clauses of large

3
We remark that the natural definition of size is to count monomials with repetition, but all lower bound techniques known

actually establish slightly stronger lower bounds on the number of distinct monomials.
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size (such as PHP formulas). In the rest of this paper we will therefore only study PC and not PCR,

and will focus on showing degree lower bounds. In particular, we will not need distinct formal

variables x for negated literals over x , but will assume that clauses of a CNF formula are translated

into polynomials as in (2.2).

Furthermore, it will be convenient for us to simplify the definition of PC so that axioms x2−x are

always applied implicitly whenever possible. We do this by defining the result of the multiplication

operation to be the multilinearized version of the product. This can only decrease the degree (and

size) of the refutation, and is in fact how polynomial calculus is defined in [2]. Hence, from now on

whenever we refer to polynomials and monomials we mean multilinear polynomials and multilinear

monomials, respectively, and polynomial calculus is defined over the (multilinear) polynomial

ring F[x ,y, z, . . .]/⟨x2 − x ,y2 − y, z2 − z, . . .⟩.
It might be worth noticing that for this modified definition of polynomial calculus it holds that

any unsatisfiable k-CNF formula can be refuted in linear length, although the polynomials in the

refutation might have an exponential number of monomials. This serves to illustrate the point that

in contrast to resolution, for polynomial calculus the size of refutations, rather than the length, is
the right measure on which to focus. This linear length upper bound is not hard to show, and in

some sense is probably folklore, but since it does not seem to be too widely known we state it for

the record and provide a proof.

Proposition 2.4. Let F =
∧m

i=1Ci be an unsatisfiable k-CNF formula. Then F has a multilinear
polynomial calculus refutation of length O(km).

Proof. Given an unsatisfiable k-CNF formula F =
∧m

i=1Ci , we claim that the polynomial

pj = 1 −
∏j

i=1 (1 −Ci ) can be derived in length O(kj ) for j = 1, . . . ,m, where we identify the

clause Ci ∈ F with the polynomial encoding pPC (Ci ) of this clause in (2.2). The end result is

the polynomial pm = 1 −
∏m

i=1 (1 − Ci ). As F is unsatisfiable, for every {0, 1}-assignment there

is at least one Ci that evaluates to 1 and hence pm evaluates to 1. Thus, pm is equal to 1 on all

{0, 1}-assignments. However, it is a basic fact that every function f : {0, 1}n → F is uniquely
representable as a multilinear polynomial in F[x1, . . . ,xn] (since the multilinear monomials span

this vector space and are linearly independent, they form a basis). Therefore, we can conclude that

pm is syntactically equal to the polynomial 1, and the proposition follows.

We proceed to establish the claim by induction. The base case is the polynomial p1 that is equal
to C1. To prove the induction step, we need to show how to derive

pj+1 = 1 −

j+1∏
i=1

(1 −Ci ) = 1 − (1 −Cj+1) (1 − pj ) = pj +Cj+1 −Cj+1pj (2.4)

from pj and Cj+1 in O(k ) steps. To start, we derive Cj+1pj from pj , which can be done with O(k )
multiplications and additions since the width/degree ofCj+1 is upper-bounded by k . We derive pj+1
in two more steps by first taking a linear combination of pj and Cj+1pj to get pj −Cj+1pj and then

adding Cj+1 to this to obtain pj −Cj+1pj +Cj+1 = pj+1. The proposition follows. □

We remark that for non-multilinear PC or PCR as in Definition 2.2 the linear-length refutation

above will not work, since in general one might need an exponential number of applications of the

Boolean axioms x2 − x to multilinearize the polynomials.

2.3 Some Algebra Basics
When proving lower bounds on polynomial calculus degree a key step will be to define different

polynomial ideals and to reason about other polynomials modulo these ideals. In order to do so
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we need to have an ordering of monomials (which, as just discussed in Section 2.2, we will always

assume to be multilinear).

Definition 2.5 (Admissible ordering). We say that a total ordering ≺ on the set of all monomials

over some fixed set of variables is admissible if the following conditions hold:

• If Deg (m1) < Deg (m2), thenm1 ≺m2.

• For anym1,m2, andm such thatm1 ≺m2 and Vars(m) ∩
(
Vars(m1) ∪ Vars(m2)

)
= ∅, it holds

thatmm1 ≺mm2.

We writem1 ≼m2 to denote thatm1 ≺m2 orm1 =m2.

Two terms t1 = α1m1 and t2 = α2m2 (for α1,α2 ∈ F) are ordered in the same way as their

underlying monomialsm1 andm2.

One example of an admissible ordering is to first order monomials with respect to their degree

and then lexicographically. In this paper we will let ≺ denote any admissible ordering, but the

reader can think of the degree-lexicographical ordering without any particular loss of generality.

In what follows, when we write a polynomial p as a sum of terms p =
∑

i ti we implicitly assume

that all terms are over distinct monomials.

Definition 2.6 (Leading, reducible, and irreducible terms). For a polynomial p =
∑

i ti , the leading
term LT (p) of p with respect to an admissible ordering ≺ is the largest term ti according to ≺. Let I
be an ideal over the (multilinear) polynomial ring F[x ,y, z, . . .]/⟨x2 − x ,y2 − y, z2 − z, . . .⟩. We say

that a term t is reducible modulo I if there exists a polynomial q ∈ I such that t = LT (q) and that t
is irreducible modulo I otherwise.

We have the following basic fact.

Fact 2.7. Let I be an ideal over F[x ,y, z, . . .]/⟨x2 − x ,y2 − y, z2 − z, . . .⟩. Then any multilinear
polynomial p ∈ F[x ,y, z, . . .]/⟨x2 − x ,y2 − y, z2 − z, . . .⟩ can be written uniquely as a sum p = q + r ,
where q ∈ I and r is a linear combination of irreducible terms modulo I .

Proof. The fact that p can be written as p = q + r , with q ∈ I and r containing only irreducible

terms modulo I can be argued by induction over LT (p).
If LT (p) is irreducible, then by induction we can write p ′ = p − LT (p) on the required form

p ′ = q′ + r ′, from which we get p = q′ + (LT (p) + r ′). If LT (p) is reducible, then by definition there

exists a polynomial q ∈ I such that LT (p) = LT (q), and p ′ = p − q only contains terms that are

smaller than LT (p). Again we can write p ′ on the required form p ′ = q′ + r ′, from which we get

p = (q + q′) + r ′.
To argue uniqueness, suppose that we can write p = q1+r1 = q2+r2 for r1 , r2. Then rearranging

yields r1 − r2 = q2 − q1 ∈ I which shows that the leading term in r1 − r2 is not irreducible after all.
This is a contradiction. □

This fact is what allows us to reduce polynomials modulo an ideal in a well-defined manner.

Definition 2.8 (Reduction operator). Let p ∈ F[x ,y, z, . . .]/⟨x2 − x ,y2 − y, z2 − z, . . .⟩ be any multi-

linear polynomial and let I be an ideal over F[x ,y, z, . . .]/⟨x2 − x ,y2 − y, z2 − z, . . .⟩. The reduction
operator RI is the operator that when applied to p returns the sum of irreducible terms RI (p) = r
such that p − r ∈ I .

We conclude our brief algebra review by stating two observations that are more or less immediate,

but are helpful enough for us to want to highlight them explicitly.

Observation 2.9. For any two ideals I1, I2 such that I1 ⊆ I2 and any two polynomials p, p ′ it holds
that RI2 (p · RI1 (p

′)) = RI2 (pp
′).
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Proof. Let us write

p ′ = q′ + r ′ (2.5)

for q′ ∈ I1 and r
′
a linear combination of irreducible terms over I1. In the same way, let us write

p · RI1 (p
′) = pr ′ = q + r (2.6)

for q ∈ I2 and r a linear combination of irreducible terms over I2. Then

pp ′ = pq′ + pr ′ = pq′ + q + r (2.7)

where pq′ + q ∈ I2. By the uniqueness in Fact 2.7, we conclude that the equality RI2 (pp
′) = r =

RI2 (p · RI1 (p
′)) holds. □

Observation 2.10. Suppose that the term t is irreducible modulo the ideal I and let ρ be any
partial assignment of variables in Vars(t ) to values in F such that t↾ρ , 0. Then t↾ρ is also irreducible
modulo I .

Proof. Let t =mρt
′
wheremρ is the product of all variables in t assigned by ρ, and let α =mρ↾ρ .

Then t↾ρ = αt ′, where by assumption we have α , 0. If there is a polynomial q ∈ I such that

LT (q) = t↾ρ , then α−1mρq ∈ I and LT (α−1mρq) = α−1mρt↾ρ = mρt
′ = t , contradicting that t

is irreducible. (Note that this final step crucially uses that ≺ is not only degree-respecting but

admissible.) □

3 LOWER BOUNDS FROM GRAPH EXPANSION AND COMBINATORIAL GAMES
Many lower bounds in proof complexity are proved by arguing in terms of expansion. One common

approach is to associate a bipartite graph G (F ) with the CNF formula F with clauses on one side

and variables on the other and with edges encoding that a variable occurs in a clause (the so-called

clause-variable incidence graphmentioned in the introduction), and establish lower bounds provided

that this graph is well-connected. In particular, the following notion of expansion often plays an

important role.

Definition 3.1 (Bipartite boundary expander). A bipartite graph G = (U
.
∪ V ,E) is a bipartite

(s,δ )-boundary expander if for every set of verticesU ′ ⊆ U , |U ′ | ≤ s , it holds that |∂(U ′) | ≥ δ |U ′ |,

where the boundary ∂(U ′) =
{
v ∈ V : |N (v ) ∩U ′ | = 1

}
consists of all vertices on the right-hand

side V that have a unique neighbour inU ′ on the left-hand side.

The method we present in this work, which is an extension of the techniques developed by

Alekhnovich and Razborov [2], is a variation of the theme of proof complexity lower bounds

via graph expansion. As already discussed, however, we will need a slightly more general graph

construction where constraints and variables can be grouped into clusters, and we also want to

consider not just translations of CNF formulas but arbitrary sets of polynomials as inputs.

In this section, we give a high-level description of the lower bound method in terms of a simple

combinatorial game played on bipartite graphs. This will allow us to give a unified treatment

of lower bound techniques for resolution width and polynomial calculus degree, highlighting

similarities and differences between the two proof systems. Our hope is that this language could

also provide a convenient way to teach resolution and polynomial calculus lower bounds as, say,

part of an advanced course in computational complexity theory. For simplicity, in this section we

only consider CNF formulas, although for polynomial calculus all concepts are easy to extend to

general (multilinear) polynomials.

We want to point out that we will present no new results in this section, and also will not prove

why our combinatorial game is sufficient to establish degree lower bounds for polynomial calculus.
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Readers who wish to study the technical details of our new contributions can therefore skip ahead

to Section 4.

3.1 Incidence Graphs for Sets of Clauses and Variables
Throughout this section, we let F denote a CNF formula over variablesV . In order to generalize

the clause-variable incidence graphs to sets of clauses and variables, we consider partitions of

the clauses into F = E ∪
⋃m

i=1 Fi , where E is a special clause set that should be satisifiable. We

also consider divisions of the variablesV =
⋃n

j=1Vj . Importantly, this need not be a partition, but
we will want it to be “close” to a partition. More formally, we say thatV =

⋃n
j=1Vj has overlap

bounded by ℓ if any variable x appears in at most ℓ different sets Vj , and we will want our division

into variable subsets to have constant overlap.

In what follows, we will often overload notation and consider F and V to be endowed with

such a partition and division, respectively. We let any such representation of F andV define a

bipartite graph (F ,V )E in the following way:

• The left vertex set is {F1, . . . , Fm }.
• The right vertex set is {V1, . . . ,Vn }.
• There is an edge (Fi ,Vj ) for every Fi and Vj such that Vars(Fi ) ∩Vj , ∅.

The special clause set E is not part of this graph, but it will “filter” which truth value assignments

to consider when playing the combinatorial games to be described next.
4

Note that we do not discuss above how to partition the clauses or divide the variables—the

(F ,V )E -graph construction is well-defined for any partitions and divisions. Intuitively, though,

the construction of this graph will be guided by an understanding of the combinatorial structure of

the formula F , and the goal is to construct a graph for which winning strategies can be found in

the combinatorial games which we will discuss below.

3.2 The Resolution Edge Game and Width Lower Bounds
Let us now present a combinatorial game on (F ,V )E -graphs that can be used to prove resolution

lower bounds. The game is played by two players, whom we refer to as Adversary and Prover, and

the intention is to design the game so that winning strategies for Prover correspond to resolution

lower bounds.

Definition 3.2 (Resolution edge game). Given a CNF formula F over variables V , let (F ,V )E
be a bipartite graph as constructed above (with the clause set E being satisfiable), and suppose

that (Fi ,Vj ) is an edge in this graph. Then the resolution edge game on (Fi ,Vj ) with respect to the

filtering set E is the following game:

(1) Adversary chooses any total assignment α such that α (E) = 1.

(2) Prover modifies α on the set of variables Vj to get a new assignment α ′.
(3) Prover wins if α ′(Fi ∧ E) = 1.

We say that Prover wins the game on (Fi ,Vj ) if there is a strategy that always produces a winning

assignment α ′ given any α satisfying E. Prover wins the resolution edge game on (F ,V )E if there is

a winning strategy for all edges in the graph.

Let us make this more concrete by giving an example.

4
Jumping ahead a bit for expert readers, if we want to prove lower bounds for, e.g., pigeonhole principle formulas, then it is

natural to choose the set E so that it is only satisfied by assignments corresponding to partial matchings of pigeons to holes.
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F1

F2

F3

V1

V2

V3

w ∨ x ∨ y
u ∨ x
u ∨ x

x ∨ y
x ∨ z

x ∨ y ∨ z

x ∨ y
x ∨ z

x ∨ y ∨ z

{w, y}

{x, y}

{u,w, z}

E = {y ∨ z}

Fig. 1. Generalized incidence graph to illustrate the resolution edge game.

Example 3.3. Consider the toy formula

(w ∨ x ∨ y) ∧ (u ∨ x ) ∧ (u ∨ x ) ∧ (x ∨ y) ∧ (x ∨ z) ∧

(x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ y ∨ z) ∧ (y ∨ z)
(3.1)

over variables {u,w,x ,y, z}. Suppose we have the partition into clause sets

F1 = {w ∨ x ∨ y, u ∨ x , u ∨ x } (3.2a)

F2 = {x ∨ y, x ∨ z, x ∨ y ∨ z} (3.2b)

F3 = {x ∨ y, x ∨ z, x ∨ y ∨ z} (3.2c)

E = {y ∨ z} (3.2d)

and the division into variable sets

V1 = {w,y} (3.3a)

V2 = {x ,y} (3.3b)

V3 = {u,w, z} (3.3c)

with overlap ℓ = 2. This yields the (F ,V )E -graphs in Figure 1. Let us analyse the resolution edge

game played on three different edges:

(1) For the top-left-to-top-right edge (F1,V1), Adversary can play any total assignment α1 ex-
tending ρ1 = {u 7→ 0,x 7→ 1,y 7→ 0}. Then Prover cannot win, since ρ1 (u ∨ x ) = 0 but the

assignments to u and x cannot be changed (they are not in V1). This shows that any graph

construction yielding an edge (Fi ,Vj ) for which some clause C ∈ Fi has no variables in Vj is
a bad idea from Prover’s point of view.

(2) A slightly more interesting example is the top-left-to-mid-right edge (F1,V2). Here Adversary
can play any total assignment α2 extending ρ2 = {u 7→ 0,w 7→ 0,y 7→ 0, z 7→ 0}, again

forcing a loss for Prover. To see this, note first that the variables u,w , and z cannot be flipped,
since they are not in V2. Furthermore, changing the assignment to y ∈ V2 is not possible
either, since this falsifies E. But this means that the only variable Prover can adjust is x , and
this is not sufficient since F1↾ρ2 = {x ,x }.

(3) Finally, consider the mid-left-to-mid-right edge (F2,V2). For this edge Prover has a winning
strategy. Given any assignment α3 from Adversary such that α3 (E) = 1, Prover can set

α ′(x ) = α3 (y ∨ z) and leave the assignments to the other variables unchanged. The filtering

set is still satisfied, since the assignments to y and z were not touched. Also, F2 evaluates to
true since these clauses encode x ↔ (y ∨ z), and x is assigned precisely so as to satisfy this.

Hence, α ′(F2 ∧ E) = 1 and Prover wins the game on (F2,V2).
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A moment of reflection reveals that one way to make sure that Prover can always win the

resolution edge game on (F ,V )E is to let this graph be the standard clause-variable incidence

graph with each clause and variable forming its own vertex and with E = ∅. In order to prove

resolution lower bounds, we will need not only that Prover has a winning strategy, however, but

also that the (F ,V )E -graph is an expander in the sense of Definition 3.1.

Definition 3.4 (Resolution expander). An (F ,V )E -graph is an (s,δ ,E)-resolution expander if:
• Prover wins the resolution edge game on (F ,V )E .
• The (F ,V )E -graph is a bipartite (s,δ )-boundary expander, i.e., for all left vertex subsets

F ′ ⊆ F \ E with |F ′ | ≤ s it holds that |∂(F ′) | ≥ δ |F ′ |.

(It is important to note here that |F ′ | measures the number of vertices, i.e., the number of clause
subsets, and not the total number of clauses.)

We say that a CNF formula F over variablesV admits an (s,δ ,E)-resolution expander if there is
a partition of the clauses F = E ∪

⋃m
i=1 Fi and a division of the variablesV =

⋃n
j=1Vj such that

the resulting (F ,V )E -graph is an (s,δ ,E)-resolution expander.

Constructing resolution expanders is sufficient to prove resolution width lower bounds.

Theorem 3.5 (essentially [7]). If a CNF formula F admits an (s,δ ,E)-resolution expander with
overlap ℓ, then any resolution refutation of F requires width larger than δs/(2ℓ).

Let us start by outlining how the proof for Theorem 3.5 goes. Following [7], we prove the theorem

by defining a “progress measure” µ : {clauses} → N satisfying the following properties.

Property 3.6. For any axiom clause A ∈ F it holds that µ (A) = O(1).

Property 3.7. For any two clausesC ∨x and D∨x it holds for the resolventC ∨D that µ (C ∨ D) ≤
µ (C ∨ x ) + µ (D ∨ x ).

Property 3.8. For the empty clause ⊥ it holds that µ (⊥) > s .

Properties 3.6–3.8 immediately imply the following claim (since the measure µ cannot more than

double at every resolution step).

Claim 3.9. In any resolution refutation of F there is some clause C with µ (C ) ∈ (s/2, s].

Theorem 3.5 then follows from a second claim saying that clauses with medium-large progress

measure must have high width.

Claim 3.10. Any clause C with µ (C ) = σ ≤ s has width at least ≥ δσ/ℓ.

Now let us fill in the details in this outline.We say that a set of clauses F implies a clauseD, denoted
F ⊨ D, if any truth value assignment that satisies F must also satisfy D. Given an (F ,V )E -graph
for F , we define µ by

µ (C ) = min

{
|F ′ | :

∧
F ∈F ′F ∧ E ⊨ C

}
(3.4)

(i.e., µ (C ) is the smallest number of subsets of clauses on the left-hand side of the graph that together

with the filtering set E imply C). We proceed to show how Properties 3.6–3.8 and Claim 3.10 follow

from the assumption that (F ,V )E is an (s,δ ,E)-resolution expander with overlap ℓ.
Consider any axiom clause A ∈ F = E ∪

⋃m
i=1 Fi . If A ∈ E, then µ (A) = 0 since E ⊨ A, and if

A ∈ Fi for some Fi ∈ F \ E, then µ (A) = 1 since Fi ∧ E ⊨ A. Hence, µ (A) = O(1) for all axioms, and

Property 3.6 holds.

For Property 3.7, consider the resolvent C ∨ D of C ∨ x and D ∨ x . Fix minimal-size left vertex

sets F1 and F2 such that

∧
F ∈F1 F ∧ E ⊨ C ∨ x and

∧
F ∈F2 F ∧ E ⊨ D ∨ x . Then it holds that∧

F ∈F1∪F2 F ∧ E ⊨ C ∨ D, so µ (C ∨ D) ≤ |F1 ∪ F2 | ≤ |F1 | + |F2 | = µ (C ∨ x ) + µ (D ∨ x ).

J. ACM, Vol. A, No. B, Article XX. Publication date: January 2020.



XX:14 Mladen Mikša and Jakob Nordström

Note that so far we did not use that (F ,V )E is an (s,δ ,E)-resolution expander, but this will be

needed to establish Property 3.8. Consider any F ′ ⊆ F \ E such that |F ′ | = s , and let us write

F ′ = {F1, . . . , Fs } where Fi are left vertices in (F ,V )E . We want to argue that

∧
Fi ∈F ′Fi ∧ E ⊭ ⊥,

which shows that we must have µ (⊥) > s as desired.
By the expansion properties of (F ,V )E it holds that |∂(F ′) | ≥ δ |F ′ | > 0. This means that

the left vertex set F ′ has a unique neighbour, or, in other words, that there is a left vertex set Fs
and a right vertex set Vs (possibly after relabelling) such that Vs ∈ N (Fs ) \ N

(⋃s−1
j=1 Fj

)
. By the

same argument, we can find Fs−1 ∈ F
′ \ {Fs } andVs−1 ∈ N (Fs−1) \ N

(⋃s−2
j=1 Fj

)
. We can repeat this

reasoning inductively—this is sometimes referred to as a peeling argument—to find a matching

F1 ↔ V1, F2 ↔ V2, . . . , Fs ↔ Vs such that Vi ∈ N (Fi ) \ N
(⋃i−1

j=1 Fj
)
for all i = 1, . . . , s (i.e., Vi is not

a neighbour of any Fj , j < i).
Take any total truth value assignment α such that α (E) = 1. Note that such an assignment exists,

since E should be satisfiable by definition. Since Prover wins the resolution edge game on (F1,V1),
there is an assignment α1 such that α1 (F1 ∪ E) = 1. Prover also wins the game on (F2,V2), and so α1
can be modified on V2 to obtain an assignment α2 such that α2 (F1 ∪ F2 ∪ E) = 1—here we use that

Vars(F1)∩V2 = ∅ since there is no edge (F1,V2), and so the modification of α1 to α2 does not change
the fact that F1 is satisfied. Continuing in this way, Prover can play the edge game on (Fi ,Vi ) for
i = 3, 4 . . . , s , in each step modifying αi−1 on Vi to obtain αi that satisfies both Fi and

∧
j<iFj ∧ E.

This yields an assignment αs such that αs
(∧

Fi ∈F ′Fi ∧ E
)
= 1, and so Property 3.8 holds.

It remains to prove Claim 3.10, i.e., that if C is a clause with µ (C ) = σ ≤ s , then C has width at

least δσ/ℓ. Towards this end, fix some left vertex set FC ⊆ F \ E witnessing that µ (C ) = σ . Then
|FC | = σ and

∧
F ∈FC F ∧E ⊨ C , but for all F ′ ⊆ FC it holds that

∧
F ∈F ′ F ∧E ⊭ C (where again the

subset relation is with respect to the clause sets forming the left-hand side of the (F ,V )E -graph).
Claim 3.10 now follows from another, final claim.

Claim 3.11. For all V ∈ ∂(FC ) it holds that V ∩ Vars(C ) , ∅.

Since every variable occurs in at most ℓ sets V ∈ V , Claim 3.11 implies that C has width at

least |∂(FC ) |/ℓ ≥ δ |FC |/ℓ = δσ/ℓ, which is what we want to prove. To establish Claim 3.11, we

again appeal to the resolution edge game. Fix any V ∈ ∂(FC ) and its unique neighbour FV ∈ FC .
By the minimality of FC we have

∧
F ∈FC \{FV } F ∧ E ⊭ C , or, expressed differently, there exists

an assignment α such that α
(∧

F ∈FC \{FV } F ∧ E
)
= 1 but α (C ) = 0. Use Prover’s strategy for the

edge game on (FV ,V ) to modify α locally on V into an assignment α ′ such that α ′(FV ∧ E) = 1.

Since no variable in V appears in FC \ {FV } or C we have α ′(FC \ {FV }) = α (FC \ {FV }) = 1 and

α ′(C ) = α (C ) = 0. But this contradicts that FC was chosen so that

∧
F ∈FC F ∧E ⊨ C . This concludes

the proof, and Theorem 3.5 follows.

3.3 Two Applications of the Resolution Edge Game: Tseitin and Onto FPHP Formulas
We next show how Theorem 3.5 can be used to reprove some classic lower bounds for resolution.

We employ the theorem to obtain lower bounds on width, after which the analogue of Theorem 2.3

for resolution from [7] can be used to turn these width lower bounds into size lower bounds.

Let us first consider Tseitin formulas, which provide a way of encoding (the negation of) the

principle that “the sum of the vertex degrees in a graph is even.” Let G = (V ,E) be a connected
undirected graph of size |V | = n and let χ : V → {0, 1} be a function labelling vertices in G by 0

or 1. Identify every edge e ∈ E with a Boolean variable, and for every vertex v ∈ V let PARITYv, χ
be the set of clauses encoding ⊕

e ∋v

e ≡ χ (v ) (mod 2) , (3.5)
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1

0 0

x y

z

(a) Triangle graph with odd-weight labelling.

(x ∨ y)

∧ (x ∨ y)

∧ (x ∨ z)

∧ (x ∨ z)

∧ (y ∨ z)

∧ (y ∨ z)

(b) Corresponding Tseitin formula.

Fig. 2. Example Tseitin formula.

i.e., that the parity of the number of edges incident to v assigned to true should be equal to the

vertex label χ (v ), in the natural way by adding one clause for every assignment of the wrong parity

ruling out that assignment. Then the Tseitin formula Ts(G, χ ) is defined to be the CNF formula

Ts(G, χ ) =
∧
v ∈V

PARITYv, χ . (3.6)

See Figure 2 for an example, where Figure 2b displays the formula corresponding to the labelled

graph in Figure 2a.

If the maximal vertex degree of G is d , then Ts(G, χ ) is a d-CNF formula with at most nd/2
variables and at most n ·2d−1 clauses. Let us say that χ : V → {0, 1} has odd weight if

∑
v ∈V χ (v ) ≡ 1

(mod 2). Then it is not hard to verify that if G is a connected graph, it holds that Ts(G, χ ) is
unsatisfiable if and only if χ has odd weight. (For the if direction, which is the one we will need

here, note that if we sum up all parity constraints (3.5), then the right-hand side is odd by assumption,

but the left-hand side is even since every edge is counted twice.)

We can prove resolution width lower bounds for Tseitin formulas using the following definition

of expansion.
5

Definition 3.12 (Edge expander). Let us say that a graph G = (V ,E) is an (s,δ )-edge expander if
for every subset of vertices V ′ ⊆ V (G ) of size |V ′ | ≤ s it holds that |E (V ′,V \V ′) | ≥ δ |V ′ |, where
E (U ,W ) = {(u,w ) | u ∈ U , w ∈W } denotes the set of edges betweenU andW .

Theorem 3.13 ([7, 40]). If G is an (s,δ )-edge expander and χ has odd weight, then any resolution
refutation of Ts(G, χ ) requires width larger than δs/2.

Proof sketch. We build an (F ,V )E -graph for Ts(G, χ ) in the following way:

• The left clause sets Fv = PARITYv, χ consist of the clauses encoding the parity constraint for

all vertices v .
• Every edge e forms a singleton right-hand set Ve = {e} (so the overlap is ℓ = 1).

• The filtering set E = ∅ is empty.

It is straightforward to verify that if G is an (s,δ )-edge expander, then (F ,V )E is a resolution

expander with the same parameters. The edge expansion ofG corresponds exactly to the boundary

5
We note that our definition of edge expanders is slightly non-standard in that one usually fixes s = |V |/2, meaning that

the expansion factor δ will be the isoperimetric number

h (G ) = min

{
|E (V ′, V (G ) \V ′) |

|V ′ |
: V ′ ⊂ V (G ), |V ′ | ≤ ���V (G ) \V ′���

}
.

However, we obtain a more general result by considering the more relaxed notion of edge expansion in Definition 3.12.
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expansion of (F ,V )E , and Prover can always win the resolution edge game on any (Fv ,Ve ) by
flipping the value of the edge e incident to v to satisfy the parity constraint Fv = PARITYv, χ . Now

the resolution width lower bound follows from an appeal to Theorem 3.5. □

Let us next consider pigeonhole principle formulas. In the interest of generality, and to be able to

apply the tools developed in this section, we define these formulas over bounded-degree bipartite

graphs G = (U
.
∪V ,E), meaning that the set of variables is {xu,v | u ∈ U , v ∈ V , (u,v ) ∈ E}. The

axiom clauses appearing in different versions of PHP formulas are as follows:∨
v ∈N (u )

xu,v u ∈ U (pigeon axioms) (3.7a)

xu,v ∨ xu′,v v ∈ V , u,u ′ ∈ N (v ), u , u ′, (hole axioms) (3.7b)

xu,v ∨ xu,v ′ u ∈ U , v,v ′ ∈ N (u), v , v ′ (functionality axioms) (3.7c)∨
u ∈N (v )

xu,v v ∈ V (onto axioms) (3.7d)

The “plain vanilla” graph pigeonhole principle formula PHP (G ) consists of clauses (3.7a) and (3.7b);

the graph functional pigeonhole principle formula FPHP (G ) contains the clauses of PHP (G ) and in

addition clauses (3.7c); the graph onto pigeonhole principle formula Onto-PHP (G ) contains PHP (G )
plus clauses (3.7d); and the graph onto functional pigeonhole principle formula Onto-FPHP (G ), finally,
consists of all the clauses (3.7a)–(3.7d).

We obtain the standard versions of the PHP formulas by considering graph formulas as above

over the complete bipartite graph Kn+1,n . In the opposite direction, for any bipartite graph G with

n + 1 vertices on the left and n vertices on the right we can hit any version of the pigeonhole

principle formula over Kn+1,n with the restriction ρG setting xu,v to false for all (u,v ) < E (G ) to
recover the corresponding graph pigeonhole principle formula over G. When doing so, we can

use the observation from Section 2 that restricting a formula can only decrease the size, width, or

degree required to refute it.

For resolution, we can obtain lower bounds for all versions of PHP formulas simultaneously

by considering onto-FPHP formulas. Since this is the most constrained version, any lower bound

will also apply to other flavours of PHP formulas containing less axiom clauses. We can prove

such lower bounds if G is an expander in the sense of Definition 3.1 such that there is a maximum

matching from the left-hand side to the right-hand side. The following theorem can be obtained by

applying the techniques in [7], but a similar result was also stated explicitly in [21].

Theorem 3.14. If G = (U
.
∪ V ,E) is a bipartite (s,δ )-boundary expander such that there is a

full matching of V into U ,6 then any resolution refutation of Onto-FPHP (G ) requires width larger
than δs/2.

Proof. Construct an (F ,V )E -graph for Onto-FPHP (G ) as follows:

• The left clause sets Fu are singleton sets with axioms (3.7a) for each pigeon u.
• The right clause sets Vv = {xu,v | (u,v ) ∈ E} consist of all variables xu,v mentioning hole v
(so again the overlap is ℓ = 1).

• The filtering set E contains all hole axioms (3.7b), functional axioms (3.7c), and onto ax-

ioms (3.7d).

6
This condition is not needed for PHP formulas without onto axioms, and the assumption can be weakened for onto

formulas into requiring that the graph is expanding from the right to the left, but for simplicity we make the stronger

requirement of a full matching in our statement of the lower bound.
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We claim that ifG is an (s,δ )-boundary expander, then (F ,V )E is a resolution expander with the

same parameters. The expansion part is clear—(F ,V )E is isomorphic to G by construction—but

we need to argue that Prover wins the resolution edge game on (F ,V )E .
Suppose that Adversary and Prover play the game on any edge (Fu ,Vv ). Then α has to correspond

to a full matching of V into U , since the filtering set E is satisfied precisely for such assignments

(which exist by our assumptions). If α (Fu ) = 1, then Prover is already winning and does not need

to do anything. Otherwise, Prover sets α ′(xu,v ) = 1 and α ′(xu′,v ) = 0 for all u ′ , u such that

(u ′,v ) ∈ E. Then α ′(Fu ∧E) = 1, since α ′ just encodes a new full matching ofV intoU that includes

pigeon u. Hence, Prover has a winning strategy, and the resolution width lower bound follows

from Theorem 3.5. □

3.4 The Polynomial Calculus Edge Game and Degree Lower Bounds
The resolution edge game provides a unified framework in which many resolution lower bounds

can be presented, but it is clear that we cannot hope to use it to obtain lower bounds on polynomial

calculus degree. It is not hard to show that Tseitin formulas are easy over fields of characteristic 2,

and as observed in [36] onto-FPHP formulas with n + 1 pigeons and n holes are easy to refute in

any field. To get polynomial calculus degree lower bounds, we need to find winning strategies for

the more challenging game presented next, where Prover has to choose an assignment first and

Adversary can adapt to this choice.

Definition 3.15 (Polynomial calculus edge game). Given an (F ,V )E -graph for the CNF formula F

over variablesV (with the clause set E being satisfiable), the polynomial calculus (PC) edge game
on an edge (Fi ,Vj ) in (F ,V )E with respect to the filtering set E is the following game:

(1) Prover commits to a partial assignment ρ : Vj → {0, 1} satisfying any clauses touched in E
(i.e., ρ (C ) = 1 for all clauses C ∈ E with Vj ∩ Vars(C ) , ∅).

(2) Adversary provides a total assignment α such that α (E) = 1.

(3) Prover wins if substituting ρ for V in α yields an assignment such that α[ρ/Vj ](Fi ∧ E) = 1.

We say that Prover wins the PC edge game on (F ,V )E if there is a winning strategy for all edges in

the graph.

Example 3.16. Let us return to the (F ,V )E -graph in Figure 1. Recall that, as discussed in

Example 3.3, in the resolution edge game Prover loses on edges (F1,V1) and (F1,V2) but wins on
the edge (F2,V2).

In the harder PC edge game on (F2,V2) Prover loses. The filtering set E = {y ∨ z} needs ρ (y) = 0,

but F2↾{y=0} = {x ∨ z, x ∨ z}. Therefore, Adversary can choose α (z) = 1 − ρ (x ) to force a loss for
Prover.

On the edge (F3,V2) there is a winning strategy, however. If Prover chooses ρ = {x 7→ 1,y 7→ 0},

then we have ρ (F3) = ρ (E) = 1, which means that no matter what assignments Adversary makes to

other variables, once the assignments from ρ are substituted for x and y we have that F3 is satisfied
and that every clause touched in E is also satisfied. (In this small example, E just consists of a single

clause, but if there were other clauses in E, then every clause should either be satisfied by ρ or

should contain no variable in V2.)

Given the game for polynomial calculus in Definition 3.15, we can define PC expanders analo-

gously to resolution expanders in Definition 3.4 and obtain degree lower bounds as a consequence

of such constructions just as for resolution in Theorem 3.5. We do so in Definition 3.17 and The-

orem 3.18 below, which are an attempt at summarizing the main technical contributions of this

paper in as friendly a language as possible.
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Definition 3.17 (Polynomial calculus expander). An (F ,V )E -graph is an (s,δ ,E)-polynomial
calculus expander (or PC expander for short) if:
• Prover wins the polynomial calculus edge game on (F ,V )E .
• The (F ,V )E -graph is a bipartite (s,δ )-boundary expander, i.e., for all left vertex subsets

F ′ ⊆ F \ E with |F ′ | ≤ s it holds that |∂(F ′) | ≥ δ |F ′ |.

(Above, |F ′ | measures the number of vertices, i.e., the number of clause subsets, and not the total

number of clauses.)

We say that a CNF formula F over variables V admits an (s,δ ,E)-PC expander if there is a
partition of the clauses F = E ∪

⋃m
i=1 Fi and a division of the variablesV =

⋃n
j=1Vj such that the

resulting (F ,V )E -graph is an (s,δ ,E)-PC expander.

Theorem 3.18. If a CNF formula F admits an (s,δ ,E)-PC expander with overlap ℓ, then any
polynomial calculus refutation of F over any field requires degree larger than δs/(2ℓ).

We want to emphasize that the change of order of the players in the game in Definition 3.15

compared to Definition 3.2, which is the only difference between these two games, is also what is

absolutely crucial to obtain Theorem 3.18. For the Tseitin formulas discussed above, it is clear that

Prover can win the edge game if Adversary has to go first, since then the assignment to the edge

can easily be flipped to satisfy the relevant parity constraint. It is equally clear that this is hopeless

if Prover has to assign the edge first and Adversary can assign the rest of the edges afterwards,

making sure that the parity is violated. The fact that Prover can win when going second, but

not when going first, is a way of explaining why Tseitin formulas are hard for resolution but not

necessarily for polynomial calculus.

Another thing to note regarding Theorem 3.18 is that lower bounds hold for polynomial calculus

over any field. This is both a strength and a weakness. Generalizing the example of Tseitin formulas,

it is known that polynomial calculus over a field of characteristic p cannot efficiently refute

contradictory CNF formulas based on counting modulo q for primes p , q [9]. There is no way to

use the techniques developed in this paper to prove such results, however, since they depend on

the field.

The proof of Theorem 3.18 is by a careful adaptation of [2], which we present in Section 4. We

remark that there is no reason to require that the input should be polynomials obtained from

translations of clauses of a CNF formula—the theorem statement can be generalized to apply to

arbitrary sets of polynomials.

As we shall see in Section 5, Theorem 3.18 provides a common framework for presenting previous

PC degree lower bounds for random k-CNF formulas [2, 6] (and any CNF formulas with expanding

clause-variable incidence graphs), “vanilla” PHP formulas [2], ordering principle formulas [15],

and subset cardinality formulas [25]. More importantly, it will also allow us to prove a new lower

bound for CNF encodings of the functional pigeonhole principle.

4 A GENERALIZATION OF THE ALEKHNOVICH–RAZBOROV METHOD
We now proceed to describe a generalized constraint-variable incidence graph for polynomials and

show how polynomial calculus degree lower bounds can be obtained from such graph constructions.

Before doing so, let us recall that in what follows we only study degree in multilinear PC as explained

in Section 2.2 after Theorem 2.3. When specializing the discussion to CNF formulas F we will

identify F with the set of polynomials obtained by the canonical translation (2.2) of the clauses

C ∈ F , and will overload C to denote also the polynomial pPC (C ) when no confusion can arise. In

the rest of this paper we will switch freely between these different perspectives.

We say that a (partial or total) assignment ρ, which is always assumed to be a {0, 1}-assignment

even when we are operating in a larger field, satisfies a (multilinear) polynomial q if q vanishes
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under ρ (possibly after cancellation of like terms if ρ is a partial assignment). Note that this is

equivalent to the condition that any total assignment ρ ′ consistent with ρ makes the polynomial q
evaluate to 0. An assignment satisfies a set of polynomials Q if it satisfies all polynomials q ∈ Q ,
and similarly an assignment satisfies a family of sets of polynomials U if it satisfies all sets of

polynomials inU .

4.1 A Generalized Constraint-Variable Incidence Graph
The key to our construction of generalized constraint-variable incidence graphs is to keep track of

how polynomials in a set of polynomials are affected by partial assignments.

Definition 4.1 (Respectful and semirespectful variable sets). We say that a partial assignment ρ
respects a set of polynomials Q , or that ρ is Q-respectful, if for every polynomial q ∈ Q either

Vars(q) ∩ dom(ρ) = ∅ or ρ satisfies q, and furthermore Q does not contain any constant (i.e.,

degree-0) polynomial.
7

A set of variables V respects a set of polynomials Q if there exists an assignment ρ with

dom(ρ) = V that respects Q .
A set of variables V semirespects a set of polynomials Q , or is Q-semirespectful, if for any

assignment σ to Vars(Q ) \V there exists an assignment ρ to V such that ρ satisfies Q↾σ .

Example 4.2. Consider the CNF formula (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) translated to
the sets of polynomials Q = {x1x2,x3 − x1x3,x1x4,x5 − x1x5} together with the subsets of variables

V1 = {x1,x2,x3} and V2 = {x4,x5}. The assignment ρ2 to V2 setting x4 = x5 = 0 respects Q since it

satisfies the polynomials/clauses containing these variables, and henceV2 isQ-respectful. However,

V1 is not Q-respectful since assigning x1 will affect all polynomials in Q but cannot satisfy both

x1x4 and x5 − x1x5.
For the set of polynomialsQ ′ = {x1x2, 1−x1−x2+x1x2} obtained by translating the CNF formula

(x1 ∨ x2) ∧ (x1 ∨ x2) it holds that both of the singleton variable sets V1 = {x1} and V2 = {x2} are
Q ′-semirespectful (as witnessed by setting ρ (xi ) = 1 − σ (x3−i ) in Definition 4.1) but they are not

Q ′-respectful.

Definition 4.3 (Respectful and semirespectful satisfaction). Let P and Q be sets of polynomials and

let V be a set of variables.

We say that P is Q-respectfully satisfiable by V if there exists a partial assignment ρ with

dom(ρ) = V that satisfies all polynomials in P and respects Q . Such an assignment ρ is said to

Q-respectfully satisfy P .
We say that P is Q-semirespectfully satisfiable by V if the following holds. Consider any as-

signment σ ∗ with dom(σ ∗) = Vars(P ) ∪ Vars(Q ) that satisfies Q , and let σ be σ ∗ restricted to(
Vars(P )∪Vars(Q )

)
\V . Then there exists an assignment ρ with dom(ρ) = V that satisfies (P ∪Q )↾σ .

We want to point out that for the special case of CNF formulas Definitions 4.1 and 4.3 have

close connections to the concept of autarkies [22]. Namely, when P and Q are CNF formulas, what

Definition 4.1 says is that the assignment ρ is Q-respectful precisely when it is an autarky for Q ,
meaning that ρ satisfies all clauses in Q which it touches, or equivalently that Q↾ρ ⊆ Q holds (after

the satisfied clauses inQ↾ρ have been removed). Definition 4.3 says that ρ Q-respectfully satisfies P
if, in addition to being an autarky for Q , it is also a satifying assignment for P .

To build a bipartite graph representing the set of polynomials P, we will group the polynomials

into subsets. In what follows, we will let U = {P1, . . . , Pm } denote a collection of subsets of

7
This technical condition is just to avoid the uninteresting pathological case whenQ already contains a trivially unsatisfiable

polynomial—for such inputs we cannot expect to obtain any lower bounds anyway.
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F1

F2

F3

V1

V2

V3

wxy
x− ux
u− ux

x− xy
x− xz

yz − xyz

xy
xz

1− y − z + yz − x+ xy + xz − xyz

{w, y}

{x, y}

{u,w, z}

E = {z − yz}

Fig. 3. Generalized incidence graph from Figure 1 with constraints written as polynomials.

polynomials in P, where each subset Pi corresponds to one vertex on the left-hand side of the

graph. There will also be a set Q = P \
⋃m

i=1 Pi which is not represented as a vertex in the graph,

but which will be used to enforce respectful or semirespectful satisfaction. Jumping ahead a bit,

semirespectfulness will be relevant for resolution lower bounds whereas the stronger notion of

respectfulness is what is needed for polynomial calculus. On the right-hand side, the variables of P

will be divided into a familyV = {V1, . . . ,Vn } of subsets of variables, each Vj corresponding to a

vertex. In our definition,U andV do not need to be partitions of polynomials and variables in P,

respectively. This is not too relevant forU because we will always define it as a partition, but it

turns out to be critical for some applications to have sets inV share variables. The next definition

describes the bipartite graph that we build and distinguishes between different types of neighbour

relations in this graph.

Definition 4.4 (Bipartite (U ,V )Q -graph). Let Q be a set of polynomials,U be a family of sets

of polynomials, and V be a family of sets of variables such that Vars
(⋃

P ∈U P ∪Q
)
=
⋃

V ∈V V .

Then the (bipartite) (U ,V )Q -graph is the bipartite graph with left vertices P ∈ U , right vertices

V ∈ V , and edges {(P ,V ) | Vars(P ) ∩V , ∅}. We say that the (U ,V )Q -graph represents the set of
polynomials P =

⋃
P ∈U P ∪Q over the variables

⋃
V ∈V V .

Suppose that (P ,V ) is an edge in the (U ,V )Q -graph. Then we say that P and V are Q-respectful
neighbours if P is Q-respectfully satisfiable by V and Q-non-respectful neighbours otherwise. Sim-

ilarly, we say that P and V are Q-semirespectful neighbours if P is Q-semirespectfully satisfiable

by V and Q-non-semirespectful neighbours otherwise.

Example 4.5. For readers who wish to make the connection back to Section 3, we can again

consider the toy formula in (3.1) with partition of clauses and division of variables as in (3.2a)–(3.2d)

and (3.3a)–(3.3c). If we rewrite the clauses as polynomials, then the graph in Figure 1 turns into that

in Figure 3. This (F ,V )E -graph represents the set of polynomials in the sense of Definition 4.4.

Then the resolution edge game in Definition 3.2 is just another way to define semirespectful

satisfaction, and respectful satisfaction corresponds to the PC edge game in Definition 3.15. Thus,

as shown in Example 3.3 we have that F1 and V1 are E-non-semirespectful neighbours, as are F1
andV2. The vertices F2 andV2 are E-semirespectful neighbours, but not E-respectful neighbours, as
discussed in Example 3.16, whereas F3 and V2 are E-respectful neighbours.

Note that a set of polynomials P over variablesV can be represented in many different ways

by (U ,V )Q -graphs depending on which subset structure is imposed on P andV . Assuming that

the structuring into subsets is clear from context, we will often write (U ,V )Q as a shorthand for

the graph defined byU ,V , and Q as above. When we writeU ′ ⊆ U orV ′ ⊆ V we always view
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U ′ and V ′ as collections of subsets that respect this structuring, and |U ′ | and |V ′ | counts the

number of subsets (not the number of individual polynomials or variables overall). We will also use

standard graph notation and write N (P ) to denote the set of all neighbours V ∈ V of a vertex/set

of polynomials P ∈ U . It is important to observe that the fact that P and V are Q-respectful or
Q-semirespectful neighbours might be witnessed by an assignment that falsifies other sets of

polynomials P ′ ∈ U \ {P }.
We remark that for a CNF formula F the concept of (U ,V )Q -graphs is a fairly natural extension

of the clause-variable incidence graphG (F ). The difference is that we throw out a part of F , which

we denote Q , and consider G (F \Q ). When the remaining clauses and variables are clustered into

setsU andV , there will be an edge in the (U ,V )Q -graph between two clusters precisely when

there is some edge between a pair of elements in these clusters. The only additional information

we need to keep track of is which polynomial and variable clusters are (semi)respectful neighbours

or not. In particular, for subsets U ′ of vertices on the left we will be interested in the unique

neighbours on the right that are also (semi)respectful.

Definition 4.6 (Respectful and semirespectful boundary). Recall that for a bipartite graph G =
(U

.
∪V, E) and a left vertex subsetU ′ ⊆ U , the boundary ∂(U ′) ⊆ V is the largest right vertex

subset such that every V ∈ ∂(U ′) is a neighbour of exactly oneU ∈ U ′.
The Q-respectful boundary of U ′ is the largest subset ∂Q (U

′) ⊆ ∂(U ′) such that for each

V ∈ ∂Q (U
′) with unique neighbour P ∈ U ′ it holds that P and V are Q-respectful neighbours. We

obtain the Q-semirespectful boundary by instead taking the largest subset ∂SRQ (U ′) ⊆ ∂(U ′) such

that P and V are Q-semirespectful neighbours.

Note that if P1, P2 ∈ U
′
are such that V ∈ N (P1) ∩ N (P2) where P1 and V are Q-respectful

neighbours but P2 and V are Q-non-respectful neighbours, then V is not in the Q-respectful
boundary ofU ′ since it is a neighbour of two vertices inU ′. Thus, Q-non-respectful neighbours
can never contribute positively to the respectful boundary but can shrink it.

The following easy observation will be helpful for us later.

Observation 4.7. For any (U ,V )Q -graph and any subsetsU1 ⊆ U2 ⊆ U , it always holds that
∂Q (U2) ∩ N (U1) ⊆ ∂Q (U1) and ∂SRQ (U2) ∩ N (U1) ⊆ ∂

SR
Q (U1).

Proof. Clearly, for any subsets U1 ⊆ U2 ⊆ U , it holds that ∂(U2) ∩ N (U1) ⊆ ∂(U1). Now
consider any V ∈ ∂(U1) ∩ ∂(U2) with neighbour P ∈ U1. The question of whether P and V are

(semi)respectful neighbours depends only on P , V , and Q , and not on U1 or U2, and hence the

same subset containment holds for (semi)respectful boundary. □

The main technical result in this paper is that a set of polynomials P over variablesV is hard for

polynomial calculus with respect to degree if the polynomials can be partitioned asP =
⋃

P ∈U P∪Q
and the variable set can be written as a union (but not necessarily a partition)V =

⋃
V ∈V V in

such a way that the resulting (U ,V )Q -graph has respectful boundary expansion as defined next. We

will also show that a weaker condition of semirespectful boundary expansion for the (U ,V )Q -graph
is sufficient to guarantee resolution width lower bounds for CNF formulas.

Definition 4.8 (Respectful and semirespectful boundary expanders). Let δ > 0 and ξ ≥ 0 be

constants. A (U ,V )Q -graph is said to be an (s,δ , ξ ,Q )-respectful boundary expander , or just an
(s,δ , ξ ,Q )-expander for brevity, if for every left vertex set U ′ ⊆ U of size |U ′ | ≤ s it holds
that |∂Q (U

′) | ≥ δ |U ′ | − ξ , and if in addition the technical condition holds that every V ∈ V is

Q-respectful.
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We say that a (U ,V )Q -graph is an (s,δ , ξ ,Q )-semirespectful boundary expander if for every set

U ′ ⊆ U , |U ′ | ≤ s , we have |∂SRQ (U ′) | ≥ δ |U ′ | − ξ , and if in addition the technical condition holds

that for every P ∈ U and p ∈ P there is a total assignment ρ that satisifies Q but falsifies p.

Note that disregarding the technical side conditions (which the reader can safely ignore for now),

an (s,δ , ξ ,Q )-(semi)respectful boundary expander is a standard bipartite boundary expander except

for two modifications:

• Importantly, we measure expansion not in terms of the whole boundary but only in terms of

the (semi)respectful boundary as described in Definition 4.6.

• Also, the size of the boundary |∂Q (U
′) | on the right does not have to scale quite linearly

with the size of the vertex set |U ′ | on the left. Instead, we allow an additive loss ξ in the

expansion. In most applications we will have ξ = 0, but for one of the results discussed in

this paper we cannot obtain a good enough expander and so it will be helpful to allow a small

slack.

For readers who wish to compare to Section 3, the respectful and semirespectful boundary

expanders in Definition 4.8 are the PC and resolution expanders in Definitions 3.17 and 3.4, respec-

tively, only with the simplifying assumptions that all edges in the graph are (semi)respectful and

that we have slack ξ = 0.

Before we state our main theorems we need a final technical definition, which is used to ensure

that no variable appears in too many variable sets in V . We remark that the concept below is

also referred to as the “maximum degree” in the literature, but since we already have degrees of

polynomials and vertices in this paper we prefer a new term instead of overloading “degree” with a

third meaning.

Definition 4.9 (Overlap). The overlap of a variable x with respect to a family of variable setsV is

ol (x ,V ) = |{V ∈ V : x ∈ V }|, i.e., the number of sets V ∈ V containing x , and the overlap ofV is

ol (V ) = maxx {ol (x ,V )}.

4.2 Main Technical Results
We are now ready to state the main technical contributions of this paper. What remains of this

section will then be spent on providing the proofs for all of these statements. We remark that when

the input to the proof system is a CNF formula, we will use the notation F for this formula to

emphasize that it will be viewed as a collection F =
∧

F ∈U
∧

C ∈F C ∧
∧

D∈Q D = U ∧Q of CNF

subformulas translated to sets of polynomials.

The most general form of our resolution width and polynomial calculus degree lower bounds

can be stated as follows.

Theorem 4.10. Let F =
∧

F ∈U
∧

C ∈F C ∧ Q = U ∧ Q be a CNF formula represented by a
(U ,V )Q -graph that is an (s,δ , ξ ,Q )-semirespectful boundary expander with overlap ol (V ) = ℓ.
Suppose furthermore that for all U ′ ⊆ U , |U ′ | ≤ s , it holds that U ′ ∧ Q is satisfiable. Then any
resolution refutation of F requires width strictly greater than (δs − 2ξ )/(2ℓ).

Theorem 4.11. Let P =
⋃

P ∈U P ∪Q be a set of polynomials such that |Vars( f ) | ≤ (δs − 2ξ )/(2ℓ)
for every polynomial f ∈ P. Suppose that P is represented by an (s,δ , ξ ,Q )-respectful boundary
expander (U ,V )Q with overlap ol (V ) = ℓ, which in addition is such that for allU ′ ⊆ U , |U ′ | ≤ s ,
it holds that

⋃
P ∈U ′ P ∪Q is satisfiable. Then any polynomial calculus refutation of P requires degree

strictly greater than (δs − 2ξ )/(2ℓ).

If we want polynomial calculus lower bounds for CNF formulas we can remove the condition

that |Vars( f ) | ≤ (δs − 2ξ )/(2ℓ) for f ∈ P and simplify the statement of Theorem 4.11 as follows.
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Corollary 4.12. Let F =
∧

F ∈U
∧

C ∈F C ∧ Q = U ∧ Q be a CNF formula represented by an
(s,δ , ξ ,Q )-respectful boundary expander (U ,V )Q with overlap ol (V ) = ℓ, and suppose furthermore
that for all U ′ ⊆ U , |U ′ | ≤ s , it holds that U ′ ∧ Q is satisfiable. Then any polynomial calculus
refutation of F requires degree strictly greater than (δs − 2ξ )/(2ℓ).

We can also prove corollaries of Theorems 4.10 and 4.11 stating that we do not need any separate

condition saying that all sufficiently small families U ′ must be satisfiable when the expansion

slack ξ is equal to 0 (which is the most commonly occurring case in applications).

Corollary 4.13. Let F =
∧

F ∈U
∧

C ∈F C ∧ Q = U ∧ Q be a CNF formula represented by an
(s,δ , 0,Q )-semirespectful boundary expander (U ,V )Q with slack 0 and overlap ol (V ) = ℓ. Then any
resolution refutation of F requires width strictly greater than δs/(2ℓ).

Corollary 4.14. Let P =
⋃

P ∈U P ∪ Q be a set of polynomials such that |Vars( f ) | ≤ δs/(2ℓ)
for every polynomial f ∈ P and suppose that P is represented by (s,δ , 0,Q )-respectful boundary
expander (U ,V )Q with slack 0 and overlap ol (V ) = ℓ. Then any polynomial calculus refutation of P
requires degree strictly greater than δs/(2ℓ).

4.3 Proof of Resolution Width Lower Bounds
As a warm-up before attacking the more challenging polynomial calculus proof system, we establish

Theorem 4.10 and Corollary 4.13 for resolution. These results are nothing but fairly straightforward

generalizations of [7], albeit expressed in another language, but we will prove them using a slightly

different technique that will prepare us for the polynomial calculus degree lower bounds that

will follow. Our presentation for polynomial calculus will be self-contained, however, and will

not depend on anything in this subsection, so the reader who so wishes can safely skip ahead to

Section 4.4.

We are given a CNF formula F =
∧

F ∈U
∧

C ∈F C ∧Q = U ∧Q represented by a (U ,V )Q -graph.
We want to associate clauses C in a derivation π from F with subsets of clauses of F that could

have been used to derive C , and we will use the (U ,V )Q -graph to do so as follows.

Definition 4.15 (Clausal neighbourhood). The neighbourhood N (C ) of a clause C with respect

to (U ,V )Q is the family of all variable setsV ∈ V containing variables inC , or in formal notation

N (C ) = {V ∈ V | Vars(C ) ∩V , ∅}.

Definition 4.16 (Clausal support). Let C be a clause and s be a positive integer. Then we say

that the left vertex setU ′ ⊆ U in the (U ,V )Q -graph is (s,C )-semirespectfully contained, or just
(s,C )-contained, if |U ′ | ≤ s and ∂SRQ (U ′) ⊆ N (C ).

The clausal semirespectful s-support SupSRs (C ) ofC with respect to (U ,V )Q , or just clausal s-support
of C for brevity, is defined to be the union of all (s,C )-contained subsetsU ′ ⊆ U .

Given a small-width resolution derivation π from F , our plan is to show the following for all

clauses C ∈ π :

(1) The clausal s-support SupSRs (C ) is not large.
(2) The clause set SupSRs (C ) ∪Q is enough to derive C .

If we can achieve this, then we are done. Since
���Sup

SR
s (C )��� is small, the clause set SupSRs (C ) ∪Q is

satisfiable. The fact thatC is derivable from a satisfiable set means that this clause is also satisfiable,

and so no small-width derivation can derive the contradictory empty clause.

Let us first take care of item 1 on our list.

Lemma 4.17. Suppose that (U ,V )Q is an (s,δ , ξ ,Q )-semirespectful boundary expander with over-
lap ol (V ) = ℓ and let C be a clause of width W (C ) ≤ (δs − 2ξ )/(2ℓ). Then the clausal s-support
SupSRs (C ) with respect to (U ,V )Q is (s/2,C )-contained.
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Proof. By definition, the clausal s-support SupSRs (C ) can be written on the form SupSRs (C ) =⋃
i Ui where eachUi is (s,C )-contained.
LetUi be any (s,C )-contained set. We know that ∂SRQ (Ui ) ⊆ N (C ) and that |Ui | ≤ s . In view of

this size bound, the expansion properties of the (U ,V )Q -graph tell us that
���∂

SR
Q (Ui )

��� ≥ δ |Ui | − ξ .

Hence, it holds that

|Ui | ≤ ( |N (C ) | + ξ )/δ . (4.1)

Furthermore, we have

|N (C ) | ≤ |Vars(C ) | · ol (V ) ≤ W (C ) · ℓ ≤ δs/2 − ξ . (4.2)

Combining (4.1) and (4.2), we conclude that

|Ui | ≤ s/2 , (4.3)

or, in words, that any (s,C )-contained set is also (s/2,C )-contained.
Next, let us argue for any pair of (s,C )-contained setsU1,U2 ⊆ U that their unionU1 ∪ U2

is also (s,C )-contained. We just showed that |Ui | ≤ s/2 for i = 1, 2 and hence |U1 ∪ U2 | ≤ s . It
also holds for i = 1, 2 that ∂SRQ (Ui ) ⊆ N (C ), which implies that ∂SRQ (U1 ∪ U2) ⊆ N (C ), because

the boundary of the union is at most the union of the boundaries. This establishes thatU1 ∪U2

is (s,C )-contained, and hence (s/2,C )-contained. By induction on the number of (s,C )-contained
sets we conclude that the support SupSRs (C ) is (s/2,C )-contained, which establishes the lemma. □

We continue on the list to item 2. Recall that we write F ⊨ C if F impliesC , i.e., if any truth value

assignment that satisies F must also satisfy C .

Lemma 4.18. Let F be a CNF formula represented by a (U ,V )Q -graph that is an (s,δ , ξ ,Q )-
semirespectful boundary expander with overlap ol (V ) = ℓ, and suppose that π is a resolution derivation
in width at most (δs − 2ξ )/(2ℓ) from F . Then for every C ∈ π it holds that SupSRs (C ) ∪Q ⊨ C .

Proof. We prove that

SupSRs (C ) ∪Q ⊨ C (4.4)

by forward induction over the clauses C in the resolution derivation π .
The base case is when C is an axiom. If C ∈ Q , then (4.4) obviously holds. Suppose that

C ∈ F \Q and let the CNF subformula F be a left-hand vertex such that C ∈ F . We claim that {F }
is (s,C )-contained, from which it follows thatC ∈ SupSRs (C ) and (4.4) holds. To argue this, consider

any neighbour V ∈ N (F ). If V < N (C ), then V ∩ Vars(C ) = ∅. By the definition of semirespectful

boundary expanders in Definition 4.8 there is an assignment ρ that satisfies Q but falsifies C (and

hence F ). Clearly, there is no way to modify this assignment on V to satisfy C , so V is not a

semirespectful neighbour of F . But this shows that ∂SRQ ({F }) ⊆ N (C ), and so {F } is (s,C )-contained

as claimed.

For the induction step, suppose that C is derived from C1 and C2. By the induction hypothesis

we have for i = 1, 2 that SupSRs (Ci ) ∪Q ⊨ Ci . By the soundness of resolution, it holds that

SupSRs (C1) ∪ SupSRs (C2) ∪Q ⊨ C . (4.5)

We claim that it also holds that((
SupSRs (C1) ∪ SupSRs (C2)

)
∩ SupSRs (C )

)
∪Q ⊨ C , (4.6)

from which the inductive step follows.
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For brevity, let us write S = (SupSRs (C1) ∪ SupSRs (C2)). Note that by Lemma 4.17 we have

���Sup
SR
s (Ci )

��� ≤ s/2 for i = 1, 2, and hence |S| ≤ s . To establish (4.6), we show the more general claim

that for any S ⊆ U of size |S| ≤ s such that

S ∪Q ⊨ C (4.7)

the implication (
S ∩ SupSRs (C )

)
∪Q ⊨ C , (4.8)

must also hold.

We argue this by induction over the size of the set S \ SupSRs (C ). In the base case when this set

is empty there is nothing to prove, but if S \ SupSRs (C ) , ∅, then this means, in particular, that S

is not (s,C )-contained. Since the size constraint is satisfied, it follows that ∂SRQ (S) ⊈ N (C ). Fix

some V ∈ ∂SRQ (S) \ N (C ) with unique neighbour F ∈ S and assume towards contradiction that

(S\ {F })∪Q ⊭ C . This means that there is an assignment ρ that satisfies (S\ {F })∪Q but falsifiesC .
Since F and V are semirespectful neighbours we can modify ρ on V so that it satisfies F ∧Q . The
rest of S stays satisfied since no variable in V occurs in these clauses, and for the same reason C
stays falsified. But this contradicts (4.7), and hence (S \ {F }) ∪Q ⊨ C .
By the induction principle, we can remove all F ∈ S \ SupSRs (C ) until we reach (4.8). This

completes the induction step in our forward induction proof over π , and the lemma follows. □

Thanks to Lemmas 4.17 and 4.18, Theorem 4.10 now follows easily.

Proof of Theorem 4.10. Recall that F =
∧

F ∈U
∧

C ∈F C ∧ Q = U ∧ Q is a CNF formula for

which (U ,V )Q is an (s,δ , ξ ,Q )-semirespectful boundary expander with overlap ol (V ) = ℓ. We

are also assuming that it holds for allU ′ ⊆ U of size |U ′ | ≤ s thatU ′ ∧Q is satisfiable.

Let π be any resolution derivation from F in which all clauses have width at most (δs − 2ξ )/(2ℓ).

By Lemma 4.17 we have
���Sup

SR
s (C )��� ≤ s for allC ∈ π . By Lemma 4.18 it holds that SupSRs (C )∪Q ⊨ C .

Then it follows from the assumption in the theorem statement that SupSRs (C ) ∪Q is satisfiable, and

hence C cannot be the contradictory empty clause. This establishes the theorem. □

In order to prove Corollary 4.13, one way to argue directly is to observe that for an (s,δ , 0,Q )-
semirespectful boundary expander the empty clause will have empty support, and so Lemma 4.18

shows that contradiction cannot be derived since this would imply that the set of clauses Q is

contradictory (which would violate the definition of Q-semirespectful boundary expanders).

If we do not want to go inside the proofs and tinker, we can instead show that if (U ,V )Q
is an (s,δ , 0,Q )-semirespectful boundary expander with slack ξ = 0, then this implies that for

all U ′ ⊆ U of size |U ′ | ≤ s it holds that U ′ ∧ Q is satisfiable, after which we can appeal to

Theorem 4.10. This is the next lemma.

Lemma 4.19. Let F be a CNF formula represented by a (U ,V )Q -graph that is an (s,δ , 0,Q )-
semirespectful boundary expander for δ > 0. Then for anyU ′ ⊆ U |U ′ | ≤ s , it holds that the set of
clauses

⋃
F ∈U ′ F ∪Q is satisfiable.

Proof. LetU ′ ⊆ U be any subset of size at most s . We will argue by induction on |U ′ |.

For the base case, suppose that |U ′ | = 1 and letU ′ = {F }. Now, F must have a semirespectful

neighbour V , because otherwise {F } would be a non-expanding set. Fix any assignment ρ that

satisfies Q (and that exists by assumption). SinceV is a semirespectful neighbour of F we can flip ρ
on V to satisfy F ∧Q .

For the inductive step, we again have that since (U ,V )Q is an (s,δ , 0,Q )-expander it must hold

that
���∂

SR
Q (U ′)��� ≥ δ |U ′ | > 0. Hence, by the definition of Q-semirespectful boundary there exists a
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variable setV ′ ∈ ∂SRQ (U ′) and a set of clauses F ∈ U ′ such thatV ′ is aQ-semirespectful neighbour

of F but is not a neighbour of any other clause set inU ′ \ {F }.
By the inductive hypothesis, there exists an assignment ρ that satisfies (U ′ \ {F }) ∪Q . Just as

above, we can flip ρ onV to satisfy F ∧Q . Since the variablesV do not occur inU ′ \ {F }, all of these
clauses are still satisfied by the modified assignment. The lemma now follows by the induction

principle. □

4.4 Proof Strategy for Polynomial Calculus Lower Bound
We now proceed to polynomial calculus, for which we want to establish Theorem 4.11 and Corol-

laries 4.12 and 4.14. This will require substantially more work than the results above for resolution.

As is the case in [2], the proof of our main theorem is based on a foundational lemma from [30].

The idea is to give an overapproximation of what polynomials can be derived in degree at most D
by defining an operator R on multilinear polynomials such that all degree-D consequences of the

axioms are contained in the set {p | R (p) = 0}. The degree lower bound then follows by showing

that R (1) , 0.

Lemma 4.20 ([30]). Let P be any set of multilinear polynomials and D ∈ N+ be a positive integer.
Suppose that there exists a linear operator R on multilinear polynomials over Vars(P) of degree at
most D with the following properties:

(1) R (1) , 0.
(2) R ( f ) = 0 for all axioms f ∈ P.
(3) For every term t with Deg (t ) < D and every variable x it holds that R (xt ) = R (xR (t )).

Then any polynomial calculus refutation of P requires degree strictly greater than D.

The proof of Lemma 4.20 is not hard. The basic idea is that R will map all axioms to 0 by

property 2, and further derivation steps in degree at most D will yield polynomials that also map

to 0 by property 3 and the linearity of R. But then property 1 implies that no derivation in degree

at most D can reach contradiction.

To prove Theorem 4.11, we construct a linear operator RG that satisfies the conditions of

Lemma 4.20 when the (U ,V )Q -graph G is an expander. First, let us describe how we make

the connection between polynomials and the given (U ,V )Q -graph.

Definition 4.21 (Term and polynomial neighbourhood). The neighbourhood N (t ) of a term t with
respect to (U ,V )Q isN (t ) = {V ∈ V | Vars(t )∩V , ∅}, i.e., the family of all variable sets containing

variables mentioned by t . The neighbourhood of a polynomial p =
∑

i ti is N (p) =
⋃

i N (ti ), i.e.,
the union of the neighbourhoods of all terms in p.

This associates a family of variable sets to every polynomial in the natural way. But we are more

interested in going “in the other direction” to find out which axioms are needed in order to derive

this polynomial. That is, given a family of variable setsV ′, we would like to identify the largest

set of axioms U ′ that could possibly have been used in a small-degree derivation that yielded

polynomials p with Vars(p) ⊆
⋃

V ∈V′ V . This is the intuition behind the next definition.
8

Definition 4.22 (Polynomial support). LetV ′ ⊆ V be a family of variable sets in a (U ,V )Q -graph
and let s be a positive integer. Then we say that U ′ is (s,V ′)-respectfully contained, or just
(s,V ′)-contained, if |U ′ | ≤ s and ∂Q (U

′) ⊆ V ′.

8
We remark that for convenience we use a slightly modified, but almost equivalent, version of the original definition in [2].

This modification was proposed by Yuval Filmus and can also be found in the paper [13] mentioned in the introduction.
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We define the polynomial respectful s-support Sups (V
′) ofV ′ with respect to (U ,V )Q , or just

s-support of V ′ for brevity, to be the union of all (s,V ′)-contained subsets U ′ ⊆ U , and the

s-support Sups (t ) of a term t is defined to be the s-support of N (t ).

We will usually just speak about “support” below without further qualifying this term, since the

(U ,V )Q -graph G will be clear from context. The next two observations follow immediately from

Definition 4.22.

Observation 4.23. IfV ′ ⊆ V ′′ andU ′ is (s,V ′)-contained, thenU ′ is also (s,V ′′)-contained.

Observation 4.24. Let t and t ′ be two terms such that Vars(t ) ⊆ Vars(t ′). Then it holds that
Sups (t ) ⊆ Sups (t

′).

Once we have identified the axioms that are potentially involved in deriving p, we define the
linear operator RG as the reduction modulo the ideal generated by these axioms as in Definition 2.8.

We will show that under the assumptions in Theorem 4.11 it holds that this operator satisfies the

conditions in Lemma 4.20. Let us first introduce some notation for the set of all polynomials that

can be generated from a subset of axiomsU ′ ⊆ U .

Definition 4.25. For a (U ,V )Q -graph and U ′ ⊆ U , we write IQ (U
′) to denote the ideal

generated by the polynomial axioms in

⋃
P ∈U ′ P ∪Q .

That is, IQ (U
′) is the smallest set I of multilinear polynomials that contains all axioms in⋃

P ∈U ′ P ∪Q and that is closed under addition of p1,p2 ∈ I and under multiplication of p ∈ I by any

multilinear polynomial over Vars
(⋃

P ∈U P ∪Q
)
(where as before the resulting product is implicitly

multilinearized).

Definition 4.26 ((U ,V )Q -graph reduction). For a (U ,V )Q -graph G, the (U ,V )Q -graph reduc-
tion RG of a term t is defined as RG (t ) = RIQ (Sups (t )) (t ). For a polynomial p, we define RG (p) to be

the linear extension of the operator RG defined on terms.

Looking at Definition 4.26, it is not clear that we are making progress. On the one hand, we have

defined RG in terms of standard reduction operators modulo ideals, which is nice since there is a

well-developed machinery for such operators. On the other hand, it is not clear how to actually

compute using RG . The problem is that if we look at a polynomial p =
∑

i ti and want to compute

RG (p), then as we expand RG (p) =
∑

i RG (ti ) we end up reducing terms in one and the same

polynomial modulo a priori completely different ideals. How can we get any sense of what p
reduces to in such a case? The answer is that if our (U ,V )Q -graph is a good enough expander,

then this is not an issue at all. Instead, it turns out that we can pick a suitably large ideal containing

the support of all the terms in p and reduce p modulo this larger ideal instead without changing

anything. This key result is proven in Lemma 4.30 below. To establish this lemma, we need to

develop a better understanding of polynomial support.

4.5 Some Properties of Polynomial Support and the Graph Reduction Operator
A crucial technical property that we will need is that if a (U ,V )Q -graph is a good expander in the

sense of Definition 4.8, then for small enough setsV ′ all (s,V ′)-contained subsetsU ′ ⊆ U as per

Definition 4.22 are of at most half the allowed size.

Lemma 4.27. Let (U ,V )Q be an (s,δ , ξ ,Q )-respectful boundary expander and let V ′ ⊆ V be
such that |V ′ | ≤ δs/2 − ξ . Then it holds that every (s,V ′)-contained subset U ′ ⊆ U is in fact
(s/2,V ′)-contained.
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Proof. As |U ′ | ≤ s we can appeal to the expansion property of the (U ,V )Q -graph to derive

the inequality |∂Q (U
′) | ≥ δ |U ′ | − ξ . In the other direction, we can obtain an upper bound on the

size of ∂Q (U
′) by noting that for any (s,V ′)-contained set U ′ it holds that ∂Q (U

′) ⊆ V ′ and
hence |∂Q (U

′) | ≤ |V ′ |. If we combine these bounds and use the assumption that |V ′ | ≤ δs/2 − ξ ,
we can conclude that |U ′ | ≤ s/2, which proves thatU ′ is (s/2,V ′)-contained. □

Even more importantly, Lemma 4.27 now allows us to conclude that for a small enough subsetV ′

on the right-hand side of (U ,V )Q it holds that in fact the whole polynomial s-support Sups (V
′)

on the left-hand side is (s/2,V ′)-contained.

Lemma 4.28. Let (U ,V )Q be an (s,δ , ξ ,Q )-respectful boundary expander and let V ′ ⊆ V
be such that |V ′ | ≤ δs/2 − ξ . Then the s-support Sups (V

′) of V ′ with respect to (U ,V )Q is
(s/2,V ′)-contained.

Proof. We show that for any pair of (s,V ′)-contained setsU1,U2 ⊆ U their unionU1 ∪U2 is

also (s,V ′)-contained. First, by Lemma 4.27 we have |Ui | ≤ s/2 for i = 1, 2 and hence |U1∪U2 | ≤ s .
Second, for i = 1, 2 it holds that ∂Q (Ui ) ⊆ V

′
, which implies that ∂Q (U1 ∪ U2) ⊆ V

′
, because

taking the union of two sets can only shrink the boundary. This establishes that U1 ∪ U2 is

(s,V ′)-contained.
By induction on the number of (s,V ′)-contained sets we can conclude that the support Sups (V

′)
is (s,V ′)-contained as well, after which one final application of Lemma 4.27 shows that this set is

(s/2,V ′)-contained. This completes the proof. □

We can now prove the key technical lemma that if a term t does not have too large support

(which will be true if its degree is not too large), then it it is possible to reduce t modulo suitably

chosen larger ideals, generated also by some polynomials outside of the support of t , without
changing the result of the reduction operator. As a first step, we show that in such larger ideals

there must exist particular kinds of axioms P , for which we later argue that they do not affect the

reduction operator.

Lemma 4.29. Let G be a (U ,V )Q -graph and let t be any term. Suppose thatU ′ ⊆ U is such that
U ′ ⊋ Sups (t ) and |U

′ | ≤ s . Then there is a set of polynomials P and a variable set V such that
P ∈ U ′ \ Sups (t ) and V ∈

(
∂Q (U

′) ∩ N (P )
)
\ N (t ).

Proof. First note that U ′ cannot be (s,N (t ))-contained, because by Definition 4.22 it would

then hold thatU ′ ⊆ Sups (t ), contradicting the assumption of the lemma. We claim that the fact that

U ′ is not (s,N (t ))-contained implies that we can find a set of polynomials P with a neighbouring

subset of variablesV satisfying the conditions of the lemma. To argue this, note that since |U ′ | ≤ s
it follows from Definition 4.22 that the reason U ′ is not (s,N (t ))-contained is that there exists

some P ∈ U ′ and some set of variables V ∈ N (P ) such that V ∈ ∂Q (U
′) \ N (t ). Moreover, the

assumptionU ′ ⊇ Sups (t ) implies that such a P cannot be in Sups (t ). Otherwise there would exist

an (s,N (t ))-contained setU∗ such that P ∈ U∗ ⊆ Sups (t ) ⊆ U
′
, and using Observation 4.7 we

conclude that V ∈
(
∂Q (U

′) ∩ N (U∗)
)
⊆ ∂Q (U

∗) ⊆ N (t ), contradicting V < N (t ). Thus, we have

shown the existence of a pair (P ,V ) such that P ∈ U ′ \ Sups (t ) and V ∈
(
∂Q (U

′) ∩ N (P )
)
\ N (t ),

which proves the lemma. □

Using P and V provided by the previous lemma, we can prove the crucial technical property of

the reduction operator that enlarging the ideal does not change the resulting reduced polynomial if

the enlargement is done in the right way.

Lemma 4.30. Let G be a (U ,V )Q -graph and let t be any term. Suppose thatU ′ ⊆ U is such that
U ′ ⊇ Sups (t ) and |U

′ | ≤ s . Then it holds that RIQ (U ′) (t ) = RIQ (Sups (t )) (t ).
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Proof. IfU ′ = Sups (t ) the lemma trivially holds. Otherwise, we can use Lemma 4.29 to find a

P ∈ U ′ \ Sups (t ) and a V ∈
(
∂Q (U

′) ∩ N (P )
)
\ N (t ). Fixing such P and V , our claim is that if P is

removed from the generators of the ideal, it holds that RIQ (U ′) (t ) = RIQ (U ′\{P }) (t ). Given this claim

we are done, since we can then argue by induction over the elements inU ′ \ Sups (t ), removing

them one by one, to arrive at the conclusion that RIQ (U ′) (t ) = RIQ (Sups (t )) (t ), proving the lemma.

We proceed to establish the claim that RIQ (U ′) (t ) = RIQ (U ′\{P }) (t ). By Definition 2.8 we know

that the polynomial q = t − RIQ (U ′) (t ) is contained in the ideal IQ (U
′). Equivalently, t can then

be written as a sum t = q + RIQ (U ′) (t ), where q ∈ IQ (U
′) and RIQ (U ′) (t ) consists of terms

irreducible modulo IQ (U
′), where this sum is unique by Fact 2.7. We are going to hit the equation

t = q + RIQ (U ′) (t ) with a restriction that satisfies P while leaving t ,U ′ \ {P }, and Q untouched,

which will result in an equation t = q′ + r ′ for which we will argue that r ′ = RIQ (U ′\{P }) (t ) as well
as r ′ = RIQ (U ′) (t ), implying RIQ (U ′\{P }) (t ) = RIQ (U ′) (t ).
As our restriction ρ we choose any assignment with domain dom(ρ) = V that Q-respectfully

satisfies P . Note that there exists at least one such assignment since V ∈ ∂Q (U
′) ∩ N (P ) is

a Q-respectful neighbour of P by Definition 4.6. By the choice of ρ it holds that P is satisfied,

i.e., that all axioms in P are set to 0. Furthermore, none of the axioms in U ′ \ {P } are affected
by ρ since V is in the boundary of U ′.9 As for axioms in Q it is not necessarily true that ρ will

leave all of them untouched, but by assumption ρ respects Q and so any axiom in Q is either

satisfied (and zeroed out) by ρ or is left intact. From this and the fact that q ∈ IQ (U
′) can

be written as a polynomial combination q =
∑

i pi fi of axioms fi ∈
⋃

P ′∈U ′ P
′ ∪ Q for some

polynomials pi , it follows that q↾ρ can be be written as a polynomial combination q↾ρ =
∑

i

(
pi↾ρ
)
fi ,

where fi ∈
⋃

P ′∈(U ′\{P }) P
′ ∪ {q∗ ∈ Q | Vars(q∗) ∩ dom(ρ) = ∅}. In other words, it holds that

q↾ρ ∈ IQ (U ′ \ {P }). To see that t is preserved, note that ρ does not assign any variables in t since
V < N (t ).

Hence, after hitting the equation t = q + RIQ (U ′) (t ) with the restriction ρ we have t = q′ + r ′,
where q′ = q↾ρ ∈ IQ (U ′ \ {P }) and where r ′ = RIQ (U ′) (t )↾ρ is a sum of terms irreducible

modulo IQ (U
′), because restrictions preserve irreducibility by Observation 2.10. But if a term

is irreducible modulo IQ (U
′) it is also irreducible modulo the smaller ideal IQ (U

′ \ {P }). By
the uniqueness in Fact 2.7 it then follows that r ′ = RIQ (U ′\{P }) (t ). On the other hand, as q′ ∈
IQ (U

′ \ {P }) it follows that q′ is also in the larger ideal IQ (U
′). Since as observed before r ′ is a sum

of terms irreducible modulo IQ (U
′), we can again apply Fact 2.7 to deduce that r ′ = RIQ (U ′) (t ).

Thus, we have RIQ (U ′) (t ) = r
′ = RIQ (U ′\{P }) (t ), which proves the lemma. □

4.6 Putting the Pieces in the Proof Together
We have just a few lemmas left before we can prove Theorem 4.11, which as discussed above will

be established by appealing to Lemma 4.20. We first state a lemma saying that if a term does not

have too high degree, then we can bound the size of its support.

Lemma 4.31. Let (U ,V )Q be an (s,δ , ξ ,Q )-expander with overlap ol (V ) = ℓ. Then for any term t
with Deg (t ) ≤ (δs − 2ξ )/(2ℓ) it holds that |Sups (t ) | ≤ s/2.

Proof. Note that for any (U ,V )Q -graph we have |N (t ) | ≤ Deg (t ) · ol (V ). It thus follows from
the bound on the overlap ol (V ) in the statement of the lemma that the size of the neighbour-

hood N (t ) is bounded by δs/2 − ξ . An application of Lemma 4.28 now yields the desired bound

|Sups (t ) | ≤ s/2. □

9
Recalling the remark after Definition 4.4, we note that we can ignore here if ρ happens to falsify axioms in U \ U ′.
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If we reduce a term modulo a set of polynomials, then the result of this reduction can only

contain variables from the term and polynomials in question. The next lemma formalizes a slightly

stronger version of this claim by saying that we can essentially ignore Q in the argument.

Lemma 4.32. Consider a (U ,V )Q -graph such that all V ∈ V are Q-respectful and fix any left
subsetU∗ ⊆ U and term t . Then it holds that N

(
RIQ (U∗ ) (t )

)
⊆ N (U∗) ∪ N (t ).

Proof. Let r = RIQ (U∗ ) (t ) be the polynomial obtained when reducing the term t moduloIQ (U
∗),

i.e., t = q + r for some q ∈ IQ (U
∗) and for r a linear combination of irreducible monomials as

in Fact 2.7. Consider any variable set V ∈ V such that V < N (U∗) ∪ N (t ). We will show that

V < N (r ).
By assumption there exists an assignment ρ to all of the variables in V that respects Q . Apply

ρ to the equality t = q + r . Note that t↾ρ = t as V is not a neighbour of t . Moreover, q↾ρ is in

the ideal IQ (U
∗) because ρ does not assign values to any variables inU∗ and every axiom in Q

sharing variables with V is set to 0 by ρ. Thus, t can be written as t = q′ + r↾ρ with q′ ∈ IQ (U
∗).

As all terms in r are irreducible modulo IQ (U
∗), they remain irreducible after restricting r by ρ by

Observation 2.10. Hence, it follows that r↾ρ = r by the uniqueness in Fact 2.7 and r cannot contain
any variable fromV . This in turn implies that every setV ∈ N (r ) is contained in N (U∗)∪N (t ). □

As the final technical step, we study what happens to the reduction operator when a term is

multiplied by a variable.

Lemma 4.33. Let (U ,V )Q be an (s,δ , ξ ,Q )-respectful boundary expander with overlap ol (V ) = ℓ.
Then for any term t with Deg (t ) < ⌊(δs − 2ξ )/(2ℓ)⌋, any term t ′ occurring in RIQ (Sups (t )) (t ), and any
variable x , it holds that RIQ (Sups (xt ′)) (xt

′) = RIQ (Sups (xt )) (xt
′).

Proof. The outline of the proof is that we want to show Sups (xt
′) ⊆ Sups (xt ) and |Sups (xt ) | ≤ s ,

which will then allows us to apply Lemma 4.30. The inequality |Sups (xt ) | ≤ s follows immediately

from Lemma 4.31. To prove that Sups (xt
′) is a subset of Sups (xt ), we use Lemma 4.32 to show that

Sups (xt
′) ∪ Sups (xt ) is (s,N (xt ))-contained in the sense of Definition 4.22. It then follows that

Sups (xt
′) ∪ Sups (xt ) is contained in Sups (xt ), which in turn implies that Sups (xt

′) ⊆ Sups (xt ).
Once we have reached this point, we can apply Lemma 4.30 withU ′ = Sups (xt ) and t replaced
by xt ′.
To fill in the details of this outline, first observe that t ′ ∈ RIQ (Sups (t )) (t ) implies t ′ ≼ t and

hence Deg (t ′) ≤ Deg (t ). Thus, we can apply Lemma 4.31 to deduce that |Sups (xt
′) | ≤ s/2 and

|Sups (xt ) | ≤ s/2, and hence the size condition |Sups (xt
′) ∪ Sups (xt ) | ≤ s for containment is satis-

fied.

We also need to show that ∂Q
(
Sups (xt

′) ∪ Sups (xt )
)
⊆ N (xt ). Note that all V ∈ V are

Q-respectful by the technical side condition on (s,δ , ξ ,Q )-expanders in Definition 4.8. From

Lemma 4.32 we have

N (t ′) ⊆ N (Sups (t )) ∪ N (t ) (4.9)

and by the monotonicity in Observation 4.24 it holds that

Sups (t ) ⊆ Sups (xt ) . (4.10)

Combining (4.9) and (4.10), we derive that

N (xt ′) = N (x ) ∪ N (t ′) ⊆ N (x ) ∪ N (Sups (t )) ∪ N (t ) ⊆ N (Sups (xt )) ∪ N (xt ) . (4.11)
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If we now consider the Q-respectful boundary of the set Sups (xt
′) ∪ Sups (xt ), it holds that

∂Q
(
Sups (xt

′) ∪ Sups (xt )
)
=

=
(
∂Q
(
Sups (xt

′)
)
\ N (Sups (xt ))

)
∪
(
∂Q (Sups (xt )) \ N

(
Sups (xt

′)
))

⊆
(
N
(
xt ′
)
\ N (Sups (xt ))

)
∪
(
N (xt ) \ N

(
Sups (xt

′)
))

⊆ N (xt ) ,

(4.12)

where the first line follows from the boundary definition in Definition 4.6, the second line fol-

lows by the s-support property that ∂Q (Sups (xt )) ⊆ N (xt ) (since the support is the union of

(s,N (xt ))-contained sets), and the last line follows from (4.11). Hence, Sups (xt
′) ∪ Sups (xt ) is

(s,N (xt ))-contained.
This allows us to complete our proof outline by applying Lemma 4.30 to reach the desired

conclusion that the equality RIQ (Sups (xt ′)) (xt
′) = RIQ (Sups (xt )) (xt

′) holds. □

Now we can prove our main technical theorem for polynomial calculus degree.

Proof of Theorem 4.11. Recall that the assumptions in the statement of the theorem are that

we have a (U ,V )Q -graph for a set of polynomials P =
⋃

P ∈U P ∪ Q such that (U ,V )Q is an

(s,δ , ξ ,Q )-respectful boundary expander with overlap ol (V ) = ℓ and for every f ∈ P we have

|Vars( f ) | ≤ (δs − 2ξ )/(2ℓ). Furthermore, for allU ′ ⊆ U , |U ′ | ≤ s , it holds that
⋃

P ∈U ′ P ∪Q is

satisfiable. We want to prove that no polynomial calculus derivation from P of degree at most

(δs − 2ξ )/(2ℓ) can reach contradiction.

Note that all axioms in P have degree at most (δs − 2ξ )/(2ℓ), as this is the bound on the number

of variables in each axiom. We want to show that the operator RG in Definition 4.26 satisfies the

conditions of Lemma 4.20, from which Theorem 4.11 immediately follows. We can note right away

that the operator RG is linear by construction.

To prove that RG (1) = RIQ (Sups (1)) (1) , 0, we start by observing that the size of the s-support
of 1 is upper-bounded by s/2 according to Lemma 4.31. Using the assumption that for every subset

U ′ ofU , |U ′ | ≤ s , the set of polynomials

⋃
P ∈U ′ P ∪Q is satisfiable, it follows that 1 is not in the

ideal IQ (Sups (1)) and hence RIQ (Sups (1)) (1) = 1 , 0.

We next show that RG ( f ) = 0 for any axiom f ∈ ∪P ∈UP ∪Q . By the assumption that |Vars( f ) | ≤
(δs − 2ξ )/(2ℓ) it holds that the degree of the term t∗ =

∏
x ∈Vars(f ) x is bounded by (δs − 2ξ )/(2ℓ),

from which it follows by Lemma 4.31 that the size of the s-support of t∗ is bounded by s/2. As t∗

contains all the variables in f , the s-support Sups (t
∗) contains the s-support of every term in f by

Observation 4.24 and we can use Lemma 4.30 to conclude that RG ( f ) = RIQ (Sups (t ∗ )) ( f ). If f ∈ Q ,
this means we are done because IQ (Sups (t

∗)) contains all of Q , implying that RG ( f ) = 0.

For f ∈ U we need to establish that f is always contained in

⋃
P ∈Sups (t ∗ ) P , from which follows

that f reduces to 0 under RG . To see that f ∈
⋃

P ∈Sups (t ∗ ) P we prove that for any P ∈ U with

f ∈ P it holds that all neighbours in N (P ) \ N (t∗) have to be disrespectful, and so such a P (and

hence f ) always makes it into the support as an (s,N (t∗))-contained singleton set {P }. Taking a
neighbourV ∈ N (P ) \N (t∗) we have thatV ∩Vars(t∗) = V ∩Vars( f ) = ∅ and hence no assignment

to V can zero-out f , because V does not mention variables in f . Thus, all assignments to V leave f
unsatisfied and, hence, leave P ∋ f unsatisfied as well, implying thatV is a disrespectful neighbour

of P .
It remains to prove the last property in Lemma 4.20 stating that RG (xt ) = RG (xRG (t )) for any

term t such that Deg (t ) < ⌊(δs − 2ξ )/(2ℓ)⌋. We can see that this holds by studying the following
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sequence of equalities:

RG (xRG (t )) =
∑

t ′∈RG (t )

RG (xt
′)

[
by linearity

]

=
∑

t ′∈RG (t )

RIQ (Sups (xt ′)) (xt
′)

[
by definition of RG

]

=
∑

t ′∈RG (t )

RIQ (Sups (xt )) (xt
′)

[
by Lemma 4.33

]

= RIQ (Sups (xt )) (xRG (t ))
[
by linearity

]

= RIQ (Sups (xt )) (xRIQ (Sups (t )) (t ))
[
by definition of RG

]

= RIQ (Sups (xt )) (xt )
[
by Observation 2.9

]

= RG (xt )
[
by definition of RG

]

Thus, RG satisfies all the properties of Lemma 4.20, from which the theorem follows. □

In order to get a simpler version of Theorem 4.11 for CNF formulas as stated in Corollary 4.12, a

crucial observation is that removing polynomials from P preserves respectful expansion. Let us

state and prove this as a formal lemma.

Lemma 4.34. Let P =
⋃

P ∈U P ∪Q be a set of polynomials represented by an (s,δ , ξ ,Q )-respectful
boundary expander (U ,V )Q with overlap ol (V ) = ℓ. Then removing any axiom f from P yields a
subset of polynomials P ′ =

⋃
P ∈U ′ P ∪Q

′ representable by (s,δ , ξ ,Q ′)-respectful boundary expander
(U ′,V )Q ′ with overlap ol (V ) = ℓ.

Proof. We analyse what happens to the (U ,V )Q -graph if an axiom f is removed from P. First,

note thatV does not change and hence the overlap remains the same. Removing axioms from Q
only relaxes the conditions on respectful satisfiability while keeping all edges in the graph, so

the conditions on the expansion still hold. In removing axioms fromU we have two cases: either

removing an axiom from a set of polynomials P ∈ U yields an empty set or we are left with a

non-empty set of polynomials P ′ = P \ { f }. In the former case, it is clear that we can remove

the vertex P to obtain a graph (U \ {P },V )Q that still satisfies the same expansion conditions.

In the latter case, we claim that any set V ∈ V that is a Q-respectful neighbour of P remains a

Q-respectful neighbour of the set of polynomials P ′. Clearly, the same assignments toV that satisfy

P also satisfy P ′ ⊆ P . In particular, this shows that V must still be a neighbour of P ′, for otherwise
P ′ would not share any variables with V , which would imply that no assignment to V could satisfy

P ′ and hence P . This would contradict the assumption that V is a Q-respectful neighbour of P .
Hence, we conclude that removing any axiom f from (U ,V )Q yields a (U ′,V )Q ′-graph which is

an (s,δ , ξ ,Q ′)-expander. □

Proof of Corollary 4.12. Recall that our assumption is that F =
∧

F ∈U
∧

C ∈F C ∧Q = U ∧Q
is a CNF formula that can be represented by an (s,δ , ξ ,Q )-respectful boundary expander (U ,V )Q
with overlap ol (V ) = ℓ. Also, F has the property that for all U ′ ⊆ U , |U ′ | ≤ s , it holds that
U ′ ∧Q is satisfiable. We want to prove that no polynomial calculus derivation from F in degree at

most (δs − 2ξ )/(2ℓ) can reach contradiction.

We translate the clauses of F into polynomials and remove the polynomial axioms f ∈ P
that have degree greater than (δs − 2ξ )/(2ℓ). Note that the width of a clause, i.e., the number of

variables that it mentions, is equal to the degree of its polynomial translation, so this step removes

all f ∈ P for which |Vars( f ) | > (δs − 2ξ )/(2ℓ). We observe that removing all axiom clauses from
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U ∧Q of width strictly greater than (δs − 2ξ )/(2ℓ) could leave a subformula that is satisfiable, but

if so the lower bound trivially holds. Otherwise, any polynomial calculus refutation can only use

axioms left in our subformula, and Lemma 4.34 tells us that this subformula is representable by an

(s,δ , ξ ,Q ′)-expander. Now the lower bound follows from Theorem 4.11. □

When the expansion slack ξ in the (s,δ , ξ ,Q )-respectful boundary expander is equal to 0, we

do not need any separate condition that all sufficiently small families U ′ need to be satisfiable.

The next lemma is similar in spirit to Lemma 4.19, which was the lemma we used to establish the

analogous statement for resolution width lower bounds in Corollary 4.13.

Lemma 4.35. Let P =
⋃

P ∈U P ∪Q be a set of polynomials represented by a (U ,V )Q -graph that
is an (s,δ , 0,Q )-respectful boundary expander for δ > 0. Then for anyU ′ ⊆ U , |U ′ | ≤ s , it holds
that the subset of polynomials

⋃
P ∈U ′ P ∪Q is satisfiable.

Proof. LetU ′ ⊆ U be any subset of size at most s . First, we show that we can find a subset

V ′ ⊆ N (U ′) and an assignment ρ to the set of variables

⋃
V ∈V′ V such that ρ Q-respectfully

satisfiesU ′.

Let us argue by induction on |U ′ |. As the (U ,V )Q -graph is an (s,δ , 0,Q )-expander it holds
that |∂Q (U

′) | ≥ δ |U ′ | > 0 for any non-empty subsetU ′. Hence, by the definition of Q-respectful

boundary there exists a variable set V ′ ∈ ∂Q (U
′) and a set of polynomials P ∈ U ′ such that V ′ is

a Q-respectful neighbour of P but is not a neighbour of any other set of polynomials inU ′ \ {P }.
Therefore, there is an assignment ρ to the variables in V ′ that Q-respectfully satisfies P . By the

induction hypothesis there also exists an assignment ρ ′ that Q-respectfully satisfiesU ′ \ {P }. Note
that ρ ′ does not assign any variables in V ′ as V ′ < N (U ′ \ {P }). Hence, by taking the union ρ ∪ ρ ′

we obtain an assignment to the variables in some subset of N (U ′) that Q-respectfully satisfiesU ′.

We now need to show how to extend this to an assignment satisfying Q as well. To this end,

let ρU ′ be an assignment to the variables in

⋃
V ∈V′ V for someV ′ ⊆ N (U ′) that Q-respectfully

satisfies U ′. By another inductive argument over the size |V ′′ \ V ′ | of families V ′′ ⊇ V ′, we

show that there is an assignment ρV′′ to the variables
⋃

V ∈V′′ V that Q-respectfully satisfiesU ′

for every V ′′ with V ′ ⊆ V ′′ ⊆ V . When V ′′ = V ′, we just take the assignment ρU ′ . We

want to show that for any V ′ ∈ V \ V ′′ we can extend ρV′′ to the variables in V ′ so that the

new assignment Q-respectfully satisfiesU ′. As V ′ respects Q , there is an assignment ρV ′ to the

variablesV ′ that satisfies all affected polynomials inQ . We would like to combine ρV ′ and ρV′′ into

one assignment, but this requires some care since the intersection of the domainsV ′ ∩
(⋃

V ∈V′′ V
)

could be non-empty. Therefore, we add to ρV′′ only the subassignment ρ∗V ′ of ρV ′ that assigns the

variables in V ′ \
(⋃

V ∈V′′ V
)
and hence does not share any variables with ρV′′ .

We claim that extending ρV′′ by ρ∗V ′ creates an assignment ρV′′∪{V ′ } that respects Q . Consider
a polynomial f ∈ Q affected by ρV′′∪{V ′ } . If f mentions a variable in V ′′, then f must already

be satisfied by ρV′′ , since ρV′′ respects Q . Otherwise, f does not mention any variable from(⋃
V ∈V′′ V

)
, but has to mention at least one variable from V ′. Therefore, f must be satisfied by

the Q-respectful assignment ρV ′ and in particular by its subassignment ρ∗V ′ that assigns variables

in V ′ \
(⋃

V ∈V′′ V
)
. It follows that every polynomial f ∈ Q affected by ρV′′∪{V ′ } must be satisfied

and hence ρV′′∪{V ′ } respects Q .
We have shown that we can find an assignment to all the variables ∪V ∈VV that Q-respectfully

satisfiesU ′. SinceV includes all the variables in Q , and since Q does not contain any constant

polynomials according to Definition 4.1, this means thatQ is also fully satisfied. Hence,

⋃
P ∈U ′ P∪Q

is satisfiable and the lemma follows. □
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Proof of Corollary 4.14. Suppose that P =
⋃

P ∈U P ∪ Q is a set of polynomials such that

|Vars( f ) | ≤ δs/(2ℓ) for every polynomial f ∈ P. Suppose furthermore that P is represented by

(s,δ , 0,Q )-respectful boundary expander (U ,V )Q with slack ξ = 0 and overlap ol (V ) = ℓ. To see

that any polynomial calculus refutation of P requires degree strictly greater than δs/(2ℓ), just plug
Lemma 4.35 into Theorem 4.11. □

5 APPLICATIONS
In this section, we demonstrate how to use the machinery developed in Section 4 to establish

degree lower bounds for polynomial calculus. Let us warm up by reproving the bound from [2]

for CNF formulas F whose clause-variable incidence graphs G (F ) are good expanders in the

sense of Definition 3.1. In this case, we can simply identify the (U ,V )Q -graph with the standard

clause-variable incidence graph G (F ) to recover the degree lower bound in [2] as stated next.

Theorem 5.1 ([2]). Let F be a CNF formula such that the clause-variable incidence graphG (F ) is
an (s,δ )-boundary expander for some δ > 0. Then the polynomial calculus degree required to refute F
is Deg (F ⊢⊥) > δs/2.

Proof. To choose G (F ) as our (U ,V )Q -graph, we set Q to be the empty set, U to be the

family of singleton sets of clauses of F translated to polynomials, andV to be the set of variables

partitioned into singleton sets. As Q is an empty set every set V respects it. Also, every neighbour

of some clause/polynomialC ∈ U is aQ-respectful neighbour because we can set the neighbouring

variable so that the clause C ∈ U is satisfied. Under this interpretation G (F ) is an (s,δ , 0,Q )-
expander, and hence by Corollary 4.14 the degree of refuting F is greater than δs/2. □

As a second application, which is more interesting in the sense that the (U ,V )Q -graph is

nontrivial, we show how the degree lower bound for the ordering principle formulas in [15] can be

presented in this framework. For an undirected (and in general non-bipartite) graphG, the graph
ordering principle formula GOP (G ) claims that there exists a totally ordered set of |V (G ) | elements

where no element is minimal, as witnessed by the fact that every element/vertex v has a neighbour

u ∈ N (v ) which is smaller according to the ordering. Formally, the CNF formula GOP (G ) is defined
over variables xu,v , u,v ∈ V (G ), u , v , where the intended meaning of the variables is that xu,v is

true if u < v according to the ordering. and it consists of the following axiom clauses:

xu,v ∨ xv,w ∨ xu,w u,v,w ∈ V (G ),u , v , w , u (transitivity) (5.1a)

xu,v ∨ xv,u u,v ∈ V (G ),u , v (anti-symmetry) (5.1b)

xu,v ∨ xv,u u,v ∈ V (G ),u , v (totality) (5.1c)∨
u ∈N (v )

xu,v v ∈ V (G ) (non-minimality) (5.1d)

We remark that the graph ordering principle on the complete graphKn on n vertices is the (linear)
ordering principle formula LOPn (also known as a least number principle formula, or graph tautology
in the literature), for which the non-minimality axioms (5.1d) have width linear in n. By instead

considering graph ordering formulas for graphs G of bounded degree, one can bring the initial

width of the formulas down so that the question of degree lower bounds becomes meaningful.

To prove degree lower bounds for GOP (G ) we need the following extension of boundary expan-

sion to the case of non-bipartite graphs.

Definition 5.2 (Non-bipartite boundary expander). A graph G = (V ,E) is an (s,δ )-boundary
expander if for every subset of vertices V ′ ⊆ V (G ), |V ′ | ≤ s , it holds that |∂(V ′) | ≥ δ |V ′ |, where
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the boundary ∂(V ′) =
{
v ∈ V (G ) \V ′ : ���N (v ) ∩V ′��� = 1

}
is the set of all vertices in V (G ) \V ′ that

have a unique neighbour in V ′.

We want to point out that the definition of expansion used by Galesi and Lauria in [15] is slightly

weaker in that they do not require boundary expansion but just vertex expansion (measured as

|N (V ′) \V ′ | for vertex sets V ′ with |V ′ | ≤ s), and hence their result is slightly stronger than what

we state below in Theorem 5.3. With some modifications of the definition ofQ-respectful boundary

in (U ,V )Q -graphs it would be possible to match the lower bound in [15], but it would also make

the definitions more cumbersome and so we choose not to do so here.

Theorem 5.3 ([15]). For any non-bipartite graph G that is an (s,δ )-boundary expander it holds
that Deg (GOP (G ) ⊢⊥) > δs/4.

Proof. To form the (U ,V )Q -graph for GOP (G ), we let the set of polynomials Q consist of

all transitivity axioms (5.1a), anti-symmetry axioms (5.1b), and totality axioms (5.1c). The non-

minimality axioms (5.1d) viewed as singleton sets form the family U , while V is the family of

variable sets Vv for each vertex v containing all variables that mention v , i.e., Vv = {xu,w | u,w ∈
V (G ), u = v orw = v}.

For a vertex u, the neighbours of a non-minimality axiom Pu =
∨

v ∈N (u ) xv,u ∈ U are variable

sets Vv where v is either equal to u or a neighbour of u in G. We can prove that each Vv ∈ N (Pu )
is an Q-respectful neighbour of Pu (although the particular neighbour Vu will not contribute in

the proof of the lower bound). If v , u, then setting all the variables xv,w ∈ Vv to true and all the

variables xw,v ∈ Vv to false (i.e., making v into the minimal element of the set) satisfies Pu as well

as all the affected axioms in Q . If v = u, we can use a complementary assignment to the one above

(i.e., making v = u into the maximal element of the set) to Q-respectfully satisfy Pu . Observe that
this also shows that all Vv ∈ V respect Q as required by Definition 4.4.

By the analysis above, it holds that the boundary ∂(V ′) of some vertex set V ′ in G yields

the Q-respectful boundary ∂Q
(⋃

u ∈V ′ Pu
)
⊇ {Vv | v ∈ ∂(V

′)} in (U ,V )Q . Thus, the expan-

sion parameters for (U ,V )Q are the same as those for G and we can conclude that (U ,V )Q is

an (s,δ , 0,Q )-expander.
Finally, we note that while V is not a partition of the variables of GOP (G ), the overlap is

only ol (V ) = 2 since every variable xu,v occurs in exactly two sets Vu and Vv in V . Hence, by

Corollary 4.14 the degree of refuting GOP (G ) is greater than δs/4. □

With the previous theorem in hand, we can obtain (a slightly weaker version of) the main result

in [15], namely that there exists a family of 5-CNF formulas witnessing that the lower bound

on size in terms of degree in Theorem 2.3 is essentially optimal. That is, there are formulas over

N variables that can be refuted in polynomial calculus (in fact, in resolution) in size polynomial

in N but require degree Ω
(√

N
)
. This follows by plugging expanders with suitable parameters

into Theorem 5.3. By standard calculations (see, for example, [19]) one can show that there exist

constants γ ,δ > 0 such that randomly sampled graphs on n vertices with degree at most 5 are

(γn,δ )-boundary expanders in the sense of Definition 5.2 with high probability. By Theorem 5.3,

graph ordering principle formulas on such graphs yield 5-CNF formulas over Θ(n2) variables that
require degree Ω(n). Since these formulas have polynomial calculus refutations in size O(n3) (just
mimicking the resolution refutations constructed in [39]), this shows that the bound in Theorem 2.3

is essentially tight. The difference between this bound and [15] is that since Galesi and Lauria only

require a weaker version of expansion they can use 3-regular graphs, yielding families of 3-CNF

formulas (which is optimal, since any unsatisfiable 2-CNF formula can be refuted in width 2 in

resolution).
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Let us now turn our attention back to bipartite graphs and consider different flavours of pigeon-

hole principle formulas. We will focus on formulas over bounded-degree bipartite graphs, where

we will convert standard bipartite boundary expansion as in Definition 3.1 into respectful boundary

expansion as in Definition 4.8. Recall from Section 3.3 that given a bipartite graph G = (U
.
∪V ,E),

the graph pigeonhole principle formula PHP (G ) has axiom clauses (3.7a) and (3.7b); the graph func-
tional pigeonhole principle formula FPHP (G ) contains the clauses of PHP (G ) plus axioms (3.7c);

the graph onto pigeonhole principle formula Onto-PHP (G ) contains PHP (G ) plus axioms (3.7d);

and the graph onto functional pigeonhole principle formula Onto-FPHP (G ) contains all the axiom
clauses (3.7a)–(3.7d).

As mentioned in Section 1, it was established already in [2] that good bipartite boundary

expandersG yield formulas PHP (G ) that require large polynomial calculus degree to refute. We can

reprove this result in our language—and, in fact, observe that the lower bound in [2] works also for

the onto version Onto-PHP (G )—by constructing an appropriate (U ,V )Q -graph. In addition, we

can generalize the result in [2] slightly by allowing some additive slack ξ > 0 in the expansion.

This works as long as we have the guarantee that no too small subformulas are unsatisfiable.

Theorem 5.4 ([25]). Let G = (U
.
∪V ,E) be a bipartite graph with |U | = n, |V | = n − 1, and no

isolated vertices in V . Suppose that δ > 0 and ξ ≥ 0 are constants such that for every setU ′ ⊆ U of
size |U ′ | ≤ s it holds that
• there is a matching ofU ′ into V and
• |∂(U ′) | ≥ δ |U ′ | − ξ .

Then Deg (Onto-PHP (G ) ⊢⊥) > δs/2 − ξ .

Proof sketch. The (U ,V )Q -graph for PHP (G ) is formed by takingU to be the set of pigeon

axioms (3.7a), Q to consist of the hole axioms (3.7b) and onto axioms (3.7d), and V to be the

collection of variable sets Vv = {xu,v | u ∈ N (v )}, i.e., the variables are partitioned with respect

to the holes v ∈ V . It is straightforward to check that this (U ,V )Q -graph is isomorphic to the

graph G and that all neighbours in (U ,V )Q are Q-respectful (for
∨

v ∈N (u ) xu,v ∈ U and Vv for

some v ∈ N (u), apply the partial assignment sending pigeon u to hole v and ruling out all other

pigeons in N (v ) \ {u} forv). Moreover, using the existence of matchings for all sets of pigeonsU ′ of
size |U ′ | ≤ s we can prove that every subformulaU ′∧Q is satisfiable as long as |U ′ | ≤ s . (We note

that we might need to send some pigeons to several holes in order to satisfy the onto axioms in Q ,

but this is in order since there are no functionality axioms forbidding pigeons to fly to multiple

holes.) Hence, we can apply Theorem 4.11 to derive the claimed bound. We refer to the upcoming

full-length version of [25] for the omitted details. □

Theorem 5.4 is the only place in this paper where we use non-zero slack for the expansion. We

want to make clear that this slack parameter is not really essential for our pigeonhole principle

lower bounds per se. Rather, the reason that we need slack is so that we can establish lower bounds

for another family of formulas, namely the subset cardinality formulas studied in [25, 38, 41], by

reducing them to pigeonhole principle formulas on expanders where we have to allow for some

slack. We discuss these formulas next.

A brief (and somewhat informal) description of the subset cardinality formulas is as follows.

We start with a 4-regular bipartite graph to which we add an extra edge between a pair of non-

connected vertices on the left and right. We then write down clauses stating that each degree-4

vertex on the left has at least 2 of its edges set to true, while the single degree-5 vertex has a strict

majority of 3 incident edges set to true. On the right-hand side of the graph we encode the opposite,

namely that all vertices with degree 4 have at least 2 of its edges set to false, while the vertex with

degree 5 has at least 3 edges set to false. A simple counting argument yields that the CNF formula
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consisting of these clauses must be unsatisfiable. Formally, we have the following definition (which

strictly speaking is a slightly specialized case of the general construction, but again we refer to [25]

for the details).

Definition 5.5 (Subset cardinality formulas [25, 41]). Suppose that G = (U
.
∪V ,E) is a bipartite

graph with |U | = |V | that is 4-regular on both sides except that one extra edge has been added

between a pair of otherwise unconnected vertices u ∈ U and v ∈ V on the left and right. Then the

subset cardinality formula SC (G ) over G has variables xe , e ∈ E, and clauses:

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any u ∈ U ,

• xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any v ∈ V .

To prove lower bounds on refutation degree for these formulas we use the standard notion of

vertex expansion on bipartite graphs, where all neighbours on the left are counted and not just

unique neighbours as in Definition 3.1.

Definition 5.6 (Bipartite expander). We say that a bipartite graph G = (U
.
∪V ,E) is a bipartite

(s,δ )-expander if for each vertex setU ′ ⊆ U , |U ′ | ≤ s , it holds that |N (U ′) | ≥ δ |U ′ |.

The existence of such expanders with appropriate parameters can again be established by

straightforward calculations (as in, for instance, [19]).

Theorem 5.7 ([25]). Suppose that G = (U
.
∪V ,E) is a 4-regular bipartite

(
γn, 5

2
+ δ
)
-expander

for |U | = |V | = n and some constants γ ,δ > 0, and letG ′ be obtained fromG by adding an arbitrary
edge between two unconnected vertices in U and V . Then refuting the formula SC (G ′) requires degree
Deg (SC (G ′) ⊢⊥) = Ω(n), and hence size SPCR (SC (G ′) ⊢⊥) = exp

(
Ω(n)
)
.

Proof sketch. The proof is by reducing to graph PHP formulas and applying Theorem 5.4

(which of course also holds with onto axioms removed). We fix some complete matching in G,
which is guaranteed to exist in regular bipartite graphs, and then set all edges in the matching as

well as the extra added edge to true. Now the degree-5 vertex v∗ on the right has only 3 neighbours

and the constraint for v∗ requires all of these edges to be set to false. Hence, we set these edges

to false as well which makes v∗ and its clauses vanish from the formula. The restriction leaves us

with n vertices on the left which require that at least 1 of the remaining 3 edges incident to them is

true, while the n − 1 vertices on the right require that at most 1 out of their incident edges is true.

That is, we have restricted our subset cardinality formula to obtain a graph PHP formula.

As the original graph is a (γn, 5
2
+ δ )-expander, a simple calculation can convince us that the

new graph is a boundary expander where each set of vertices U ′ on the left with size |U ′ | ≤ γn
has boundary expansion |∂(U ′) | ≥ 2δ |U ′ | − 1. Note the additive slack of 1 compared to the usual

expansion condition, which is caused by the removal of the degree-5 vertex v∗ from the right. Now

we can appeal to Theorem 5.4 (and then Theorem 2.3) to obtain the lower bounds claimed in the

theorem. □

Let us conclude this section by presenting our new lower bounds for the functional pigeonhole

principle formulas. As a first attempt, we could try to reason as in the proof of Theorem 5.4

(but adding the axioms (3.7c) and removing axioms (3.7d)). The naive idea would be to modify

our (U ,V )Q -graph slightly by substituting the functionality axioms for the onto axioms in Q
while keepingU andV the same. This does not work, however—although the sets Vv ∈ V are

Q-respectful, the only assignment to the variables in Vv that respects Q is the one that sets all

variables xu,v ∈ Vv to false. This is because setting any xu,v to true would affect functional axioms

that mentionu and that cannot be satisfied by setting only the variables inVv . Thus, it is not possible
to satisfy any of the pigeon axioms, meaning that there are noQ-respectful neighbours in (U ,V )Q .
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In order to obtain a useful (U ,V )Q -graph, we instead need to redefineV by enlarging the variable

sets Vv , using the fact thatV is not required to be a partition. Doing so in the appropriate way

yields the following theorem.

Theorem 5.8. Suppose thatG = (U
.
∪V ,E) is a bipartite (s,δ )-boundary expander with left degree

bounded by d . Then it holds that refuting FPHP (G ) in polynomial calculus requires degree strictly
greater than δs/(2d ). It follows that if G is a bipartite (γn,δ )-boundary expander with constant
left degree and γ ,δ > 0, then any polynomial calculus (PC or PCR) refutation of FPHP (G ) requires
size exp(Ω(n)).

Proof. We construct a (U ,V )Q -graph from FPHP (G ) as follows. We let the set of polynomialsQ
consist of all hole axioms (3.7b) and functionality axioms (3.7c). We define the familyU to consist

of the pigeon axioms (3.7a) interpreted as singleton polynomials. For the variables we let V =

{Vv | v ∈ V }, where for every hole v ∈ V the set Vv is defined by

Vv =
{
xu′,v ′

���u
′ ∈ N (v ) and v ′ ∈ N (u ′)

}
. (5.2)

That is, to buildVv we start with the hole v on the right, consider all pigeons u ′ on the left that can

go into this hole, and finally include inVv for all such u ′ the variables xu′,v ′ for all holes v
′
incident

to u ′. We want to show that (U ,V )Q as defined above satisfies the conditions in Corollary 4.14.

Note first that every variable set Vv respects the set Q since setting all variables in Vv to false

satisfies all clauses/polynomials inQ mentioning variables inVv . It is easy to see from (5.2) that when

a hole v is a neighbour of a pigeon u, the variable set Vv is also a neighbour in the (U ,V )Q -graph
of the corresponding pigeon axiom Pu =

∨
v ∈N (u ) xu,v . These are the only neighbours of the pigeon

axiom Pu , as each Vv contains only variables mentioning pigeons in the neighbourhood of v . In
other words, G and (U ,V )Q share the same neighbourhood structure.

Moreover, we claim that every neighbour Vv of Pu is a Q-respectful neighbour. To see this,

consider the assignment ρu,v that sets xu,v to true and the remaining variables in Vv to false.

Clearly, Pu is satisfied by ρu,v . All axioms in Q not containing xu,v are either satisfied by ρu,v
or left untouched, since ρu,v assigns all other variables in its domain to false. Any hole axiom

xu,v ∨ xu′,v in Q that does contain xu,v is satisfied by ρu,v since xu′,v ∈ Vv for u ′ ∈ N (v ) by (5.2)

and this variable is set to false by ρu,v . In the same way, any functionality axiom xu,v ∨ xu,v ′

containing xu,v is satisfied since the variable xu,v ′ is in Vv by (5.2) and is hence assigned to false.

Thus, the assignment ρu,v Q-respectfully satisfies Pu , and so Pu andVv areQ-respectful neighbours

as claimed.

Since our constructed (U ,V )Q -graph is isomorphic to the original bipartite graph G and all

neighbour relations are respectful, the expansion parameters of G trivially carry over to respectful

expansion in (U ,V )Q . This is just another way of saying that (U ,V )Q is an (s,δ , 0,Q )-respectful
boundary expander.

To finish the proof, note that the overlap ofV is at most d . This is so since a variable xu,v appears

in a set Vv ′ only when v ′ ∈ N (u). Hence, for all variables xu,v it holds that they appear in at most

|N (u) | ≤ d sets in V . Now the conclusion that any polynomial calculus refutation of FPHP (G )
requires degree greater than δs/(2d ) can be read off from Corollary 4.14. In addition, the exponential

lower bound on the size of a refutation of FPHP (G ) whenG is a (γn,δ )-boundary expanderG with

constant left degree follows by plugging the degree lower bound into Theorem 2.3. □

It is not hard to show (again we refer to [19] for the details) that there exist bipartite graphs

with left degree 3 which are (γn,δ )-boundary expanders for γ ,δ > 0 and hence our size lower

bound for polynomial calculus refutations of FPHP (G ) can be applied to them. Moreover, if

|U | = n + 1 and |V | = n, then we can identify some bipartite graph G that is a good expander
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and hit FPHPn+1n = FPHP (Kn+1,n ) with a restriction ρG setting xu,v to false for all (u,v ) < E to

obtain FPHPn+1n ↾ρG = FPHP (G ). Since restrictions can only decrease refutation size, it follows that

size lower bounds for FPHP (G ) apply also to FPHPn+1n , yielding the second lower bound claimed in

Section 1.3.

Theorem 5.9. Any polynomial calculus or polynomial calculus resolution refutation of (the standard
CNF encoding of) the functional pigeonhole principle FPHPn+1n requires size exp(Ω(n)).

6 CONCLUDING REMARKS
In this work, we extend the techniques developed by Alekhnovich and Razborov [2] for proving

degree lower bounds on refutations of CNF formulas in polynomial calculus. Instead of looking at

the clause-variable incidence graph G (F ) of the formula F as in [2], we allow clustering of clauses

and variables and reason in terms of the incidence graphG ′ defined on these clusters. We show that

the (canonical translation to polynomials of the) CNF formula F requires high degree to be refuted

in polynomial calculus whenever this clustering can be done in a way that “respects the structure”

of the formula and so that the resulting graphG ′ has certain expansion properties. We also establish

similar lower bounds for more general sets of polynomials not obtained as translations of CNF

formulas.

This provides us with a unified framework within which we can reprove previously established

degree lower bounds in [2, 15, 25]. More importantly, this also allows us to obtain a degree lower

bound on the functional pigeonhole principle defined on expander graphs, solving an open problem

from [32]. It immediately follows from this that the (standard CNF encodings of) the usual functional

pigeonhole principle formulas require exponential proof size in polynomial calculus resolution,

resolving a question on Razborov’s problems list [35] which had (quite annoyingly) remained open.

This means that we now have an essentially complete understanding of how the different variants

of pigeonhole principle formulas behave with respect to polynomial calculus in the standard setting

with n + 1 pigeons and n holes. Namely, while onto-FPHP formulas are easy, both FPHP formulas

and onto-PHP formulas are exponentially hard in n even when restricted to bounded-degree

expanders.

A natural next step would be to see if this generalized framework can also be used to attack

other interesting formula families which are known to be hard for resolution but for which there

are currently no lower bounds in polynomial calculus. In particular, can our framework or some

modification of it prove lower bounds for different graph problems like independent set, vertex

cover, or colorability that were proved hard for resolution in [4, 5]? The area of Ramsey theory

has a lot of interesting problems in combinatorics and these problems can be studied from the

perspective of proof complexity, via establishing lower bounds on the lengths of proofs for such

problems. There already exist some lower bounds for resolution [24, 28] and we would like to

establish the same bounds in polynomial calculus. While these papers use somewhat different

strategies, they are all based on some type of a width lower bound and hence might yield to degree

lower bound techniques. A combinatorial characterization of resolution width was given in [3]

and used to prove a lower bound on the dense ordering principle. Is it possible to find a similar

characterization for the degree in polynomial calculus and use it to prove lower bounds?

Returning to the pigeonhole principle, we now understand how different encodings behave in

polynomial calculus when we have n + 1 pigeons and n holes. But what happens when we increase

the number of pigeons? For instance, do the formulas become easier if we have n2 pigeons and n
holes? (This is the point where lower bound techniques based on degree break down.) What about

arbitrary many pigeons? In resolution these questions are fairly well understood, as witnessed by
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the works of Raz [29] and Razborov [31, 33, 34], but as far as we are aware they remain wide open

for polynomial calculus.

Finally, we want to point out an intriguing contrast between our work and that of Alekhnovich

and Razborov. As discussed in the introduction, the main technical result in [2] is that when the

incidence graph of a set of polynomial equations is expanding and the polynomials are immune,

i.e., have no low-degree consequences, then refuting this set of equations is hard with respect to

polynomial calculus degree. Since clauses of widthw have maximal immunityw , it follows that

for a CNF formula F expansion of the clause-variable incidence graphG (F ) is enough to imply

hardness. A natural way of interpreting our work would be to say that we simply extend this result

to a slightly more general constraint-variable incidence graph. On closer inspection, however, this

analogy seems to be misleading, and since the authors have to confess to still being somewhat

intrigued by this, we want to elaborate briefly.

For the functional pigeonhole principle, the pigeon and functional axioms for a pigeon u taken

together imply the polynomial equation

∑
v ∈N (u ) xu,v = 1 (summing over all holes v ∈ N (u) to

which the pigeon u can fly). Since this is a degree-1 consequence, it shows that the pigeonhole

axioms in FPHP formulas have lowest possible immunity modulo the set Q consisting of hole and

functionality axioms. Nevertheless, our lower bound proof still works, and only needs expansion of

the constraint-variable graph although the immunity of the constraints is non-existent.

On the other hand, the constraint-variable incidence graph of a random set of parity constraints

is expanding asymptotically almost surely, and since over fields of characteristic distinct from 2

parity constraints have high immunity (see, for instance, [16]), the techniques in [2] can be used

to prove strong degree lower bounds in such a setting. However, it seems that our framework of

respectful boundary expansion is inherently unable to establish this result. The problem is that it

is not possible to group variables together in such a way as to ensure respectful neighbourhood

relations. At a high level, it seems that the main ingredient needed for our technique to work is that

clauses/polynomials and variables can be grouped together so that the effects of assignments to a

group of variables can always be contained in a small neighbourhood of clauses/polynomials, which

the assignments (mostly) satisify, and do not propagate beyond this neighbourhood. Functional

pigeonhole principle formulas over bounded-degree graphs have this property, since assigning a

pigeon u to a hole v only affects the neighbouring holes of u and the neighbouring pigeons of v ,
respectively. There is no such way to contain the effects locally when one starts satisfying individual

equations in an expanding set of parity constraints, however, regardless of the characteristic of the

underlying field.

In view of this, it seems that our techniques and those of [2] are closer to being orthogonal than

parallel. It would be desirable to gain a deeper understanding of what is going on here. In particular,

in comparison to [2], which gives clear, explicit criteria for hardness (is the graph expanding? are

the polynomials immune?), our work is less explicit in that it says that hardness is implied by the

existence of a “clustered clause-variable incidence graph” with the right properties, but gives no

guidance as to if and how such a graph might be built. It would be satisfying if some more general

criterion of hardness could be found that would capture both our approach and that of [2] and

ideally provide a unified view of these lower bound techniques.
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