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 INTRODUCTION 

he k-variable fragment of first-order logic L 

k consists of those first-order sentences that use at
ost k different variables. A simple example is the L 

2 sentence 

∃x∃y (Exy ∧ ∃x (Eyx ∧ ∃y (Exy ∧ ∃xEyx ))) (1.1)
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tating that there exists a directed path of length 4 in a digraph. Extending L 

k with counting quan-
ifiers ∃ ≥i x yields C 

k , which can be more economical in terms of variables. As an illustration, the
 

8 sentence 

∃x∃y 1 · · · ∃y 7 ( 
∧ 

i� j y i � y j ∧ 

∧ 

i Exy i ) (1.2)

tating the existence of a vertex of degree at least 7 in a graph can be written more succinctly as
he C 

2 sentence 

∃x∃ ≥7 y Exy . (1.3)

ounded variable fragments of first-order logic have found numerous applications in finite model
heory and related areas (see Reference [ 23 ] for a survey). Their importance stems from the fact
hat the model checking problem (given a finite relational structure A and a sentence φ, does A
atisfy φ?) can be decided in polynomial time [ 31 , 46 ]. Moreover, the equivalence problem (given
wo finite relational structures A and B, do they satisfy the same sentences?) for L 

k and C 

k can
e decided in time n 

O (k ) [ 32 ], i.e., polynomial for constant k . 

.1 Quantifier Depth 

f A and B are not equivalent in L 

k or C 

k , then there exists a sentence φ that defines a distin-
uishing property, i.e., such that A |= φ and B � |= φ, which certifies that the structures are non-
somorphic. But how complex can such a sentence be? In particular, what is the minimal quantifier
epth of an L 

k or C 

k sentence that distinguishes two n-element relational structures A and B? The
est upper bound for the quantifier depth of L 

k and C 

k is n 

k−1 [ 32 ], while, to the best of our knowl-
dge, the strongest lower bounds have been only linear in n [ 17 , 20 , 24 ]. In this article, we present

 near-optimal lower bound of n 

Ω(k / log k ) . 

Theorem 1.1. There exist ε > 0 and K 0 ∈ N such that for all integers k and n with K 0 ≤ k ≤ n 

1 /12

here is a pair of n-element (k − 1 )-ary relational structures A n , B n that can be distinguished in

-variable first-order logic but satisfy the same L 

k and C 

k sentences up to quantifier depth n 

εk/ log k . 

Note that any two non-isomorphic n-element σ -structures A and B can always be distinguished
y a simple n-variable first-order sentence of quantifier depth n, namely, 

∃x 1 · · · ∃x n 
�����
�
∧ 

i� j 

x i � x j ∧ 

∧ 

R∈σ , 
(v i 1 , ... ,v i r )∈R 

A 

Rx i 1 , . . . , x i r ∧ 

∧ 

R∈σ , 
(v i 1 , ... ,v i r )� R 

A 

¬ Rx i 1 , . . . , x i r 

�����
�
. (1.4)

ince our n 

Ω(k / log k ) lower bound for k-variable logics grows significantly faster than this trivial
pper bound n on the quantifier depth as the number of variables increases, Theorem 1.1 also de-
cribes a tradeoff in the supercritical regime above worst-case investigated by Razborov [ 43 ]: If one
educes one complexity measure (the number of variables), then the other complexity parameter
the quantifier depth) increases sharply even beyond its worst-case upper bound. 

The equivalence problem for C 

k+1 is known to be closely related to the k-dimensional

eisfeiler–Leman algorithm ( k-WL) for testing non-isomorphism of graphs and, more gener-
lly, relational structures. It was shown by Cai, Fürer, and Immerman [ 17 ] that two structures are
istinguished by k-WL if and only if there exists a C 

k+1 sentence that differentiates between them.
oreover, the quantifier depth of such a sentence also relates to the complexity of the WL al-

orithm in that the number of iterations k-WL needs to tell A and B apart coincides with the
inimal quantifier depth of a distinguishing C 

k+1 sentence. Therefore, Theorem 1.1 also implies
 near-optimal lower bound on the number of refinement steps required in the Weisfeiler–Leman
lgorithm. We discuss this next. 
ournal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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.2 The Weisfeiler–Leman Algorithm 

he Weisfeiler–Leman algorithm, independently introduced by Babai in 1979 and by Immerman
nd Lander in Reference [ 32 ] (cf. References [ 17 ] and [ 3 ] for historic notes), is a hierarchy of meth-
ds for isomorphism testing that iteratively refine a partition (or coloring) of the vertex set, ending
ith a stable coloring that classifies similar vertices . Since no isomorphism can map non-similar ver-

ices to each other, this reduces the search space. Moreover, if two structures end up with different
table colorings, then we can immediately deduce that the structures are non-isomorphic. The
-dimensional Weisfeiler–Leman algorithm, better known as color refinement , initially colors the
ertices according to their degree (clearly, no isomorphism identifies vertices of different degree).
he vertex coloring is then refined based on the color classes of the neighbors. For example, two
egree-5 vertices get different colors in the next step if they have a different number of degree-7
eighbors. This refinement step is repeated until the coloring stays stable (i.e., every pair of equally
olored vertices have the same number of neighbors in every other color class). This algorithm is
lready quite strong and is extensively used in practical graph isomorphism algorithms. 

In k-dimensional WL this idea is generalized to colorings of k-tuples of vertices. Initially the k-
uples are colored by their isomorphism type, i.e., two tuples � v = (v 1 , . . . , v k ) and � w = (w 1 , . . . , w k )
et different colors if the mapping v i �→ w i is not an isomorphism on the substructures induced on
 v 1 , . . . , v k } and { w 1 , . . . , w k } . In the refinement step, we consider for each k-tuple � v = (v 1 , . . . , v k )
nd every vertex v the isomorphism type i ( � v , v ) of the ( k + 1 )-tuple ( v 1 , . . . , v k , v ) and the current
olors c ( � v j ) of the k-tuples � v j : = (v 1 , . . . , v j−1 , v, v j+1 , . . . , v k ), where v is substituted at the jth
osition in the tuple � v . We refer to the tuple ( i ( � v , v ), c ( � v 1 ), . . . , c ( � v k )) as the color type t ( � v , v ) and

et v be a t -neighbor of � v if t = t ( � v , v ). Now, two k-tuples � v and � w get different colors if they
re already colored differently or if there exists a color type t such that � v and � w have a different
umber of t -neighbors. The refinement step is repeated until the coloring remains stable. Since in
very round the number of color classes grows, the process stops after at most n 

k steps. The color
ames can be chosen in such a way that the stable coloring is canonical, which means that two

somorphic structures end up with the same coloring, and such a canonical stable coloring can be

omputed in time n 

O (k ) . 
This simple combinatorial algorithm is surprisingly powerful. Grohe [ 25 ] showed that for ev-

ry nontrivial graph class that excludes some minor (such as planar graphs or graphs of bounded
reewidth) there exists some k such that k -WL computes a different coloring for all non-isomorphic
raphs and hence solves graph isomorphism in polynomial time on that graph class. Weisfeiler–
eman has also been used as a subroutine in algorithms that solve graph isomorphism on all
raphs. As one part of his recent graph isomorphism algorithm, Babai [ 3 ] applies k-WL for poly-
ogarithmic k to relational ( k-ary) structures and makes use of the quasi-polynomial running time
f this algorithm. 
Given the importance of the Weisfeiler–Leman procedure, it is a natural question whether the

rivial n 

k upper bound on the number of refinement steps is tight. By the correspondence between
he number of refinement steps of k-WL and the quantifier depth of C 

k+1 [ 17 ], our main result
mplies a near-optimal lower bound even up to polynomial, but still sublinear, values of k (i.e.,
 = n 

δ for small enough constant δ ). 

Theorem 1.2. There exist ε > 0 , K 0 ∈ N such that for all integers k, n with K 0 ≤ k ≤ n 

1 /12 there is

n n-element k-ary relational structure A n for which the k-dimensional Weisfeiler–Leman algorithm

eeds n 

εk/ log k refinement steps to compute the stable coloring. 

In addition to the near-optimal lower bounds for a specific dimension (or number of variables) k ,
e also obtain the following tradeoff between the dimension and the number of refinement steps:

f we fix two parameters � 1 and � 2 (possibly depending on n) satisfying � 1 ≤ � 2 ≤ n 

1 /6 /� 1 , then there
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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re n-element structures such that k-WL requires n 

Ω(� 1 / log � 2 ) refinement steps for all � 1 ≤ k ≤ � 2 .
 particularly interesting choice of parameters is � 1 = log 

c n for some constant c > 1 and � 2 = n 

1 /7 .
his implies the following quasi-polynomial lower bound on the number of refinement steps for
eisfeiler–Leman from polylogarithmic dimension all the way up to dimension n 

1 /7 : 

Theorem 1.3. For every c > 1 there is a sequence of n-element relational structures A n for which

he k-dimensional Weisfeiler–Leman algorithm needs n 

Ω( log c−1 n) refinement steps to compute the sta-

le coloring for all k with log 

c n ≤ k ≤ n 

1 /7 . 

.3 Previous Lower Bounds and Subsequent Developments 

n their seminal work [ 17 ], Cai, Fürer, and Immerman established the existence of non-isomorphic
-vertex graphs that cannot be distinguished by any first-order counting sentence with o (n) vari-
bles. Since every pair of non-isomorphic n-element structures can be distinguished by a C 

n (or
ven L 

n ) sentence (as shown in ( 1.4 ) above), this result also implies a linear lower bound on the
uantifier depth of C 

k if k = Ω(n). For all constant k ≥ 2 , a linear Ω(n) lower bound on the quan-
ifier depth of C 

k follows implicitly from an intricate construction of Grohe [ 24 ], which was used
o show that the equivalence problems for L 

k and C 

k are complete for polynomial time. An explicit
inear lower bound based on a simplified construction was subsequently presented by Fürer [ 20 ]. 

For the special case of k = 2 , Kiefer and McKay [ 33 ] showed that for all large enough n there are
xamples of n-vertex graphs that need quantifier depth either n − 2 or n − 1 to be distinguished in
 

2 . This matches the general upper bound of n − 1 and improves the previous (1 − o (1 ) ) n lower
ound of Krebs and Verbitsky [ 38 ]. For k = 3 the situation is quite different: The trivial upper
ound of n 

2 − 1 on the quantifier depth of a C 

3 -sentence distinguishing two n-vertex graphs is not
ight. This has first been shown by Kiefer and Schweitzer [ 34 , 35 ], who obtained an O (n 

2 / log n)
pper bound. The upper bound on quantifier depth for distinguishing n-vertex graphs in C 

3 has
ater been further improved to O (n log n) by Lichter et al. [ 39 ]. Thus, while the trivial linear upper
ound is tight for k = 2 , substantial savings over the quadratic upper bound for k = 3 are possible.
n a way, our lower bounds rule out the possibility of a significant asymptotical improvement for
arger k and are the first lower bounds that are super-linear in the domain size n. 

As the final version of this article was being prepared, a result [ 26 ] was announced that improves

ur lower bound from n 

Ω(k / log k ) to n 

Ω(k ) , thus making it asymptotically optimal. 

.4 Discussion of Techniques 

he hard instances we construct are based on propositional XOR (exclusive or) formulas, which
an alternatively be viewed as systems of linear equations over GF (2 ). There is a long history of
sing XOR formulas for proving lower bounds in different areas of theoretical computer science
uch as, e.g., finite model theory, proof complexity, and combinatorial optimization/hardness of
pproximation. Our main technical insight is to combine two methods that, to the best of our
nowledge, have not been used together before, namely, Ehrenfeucht-Fraïssé games on structures
ased on XOR formulas and hardness amplification by variable substitution. 

More than three decades ago, Immerman [ 30 ] presented a way to encode an XOR formula into
wo graphs that are isomorphic if and only if the formula is satisfiable. This can then be used
o show that the two graphs cannot be distinguished by a sentence with few variables or low
uantifier depth using Ehrenfeucht-Fraïssé games. Arguably the most important application of this
ethod is the result in Reference [ 17 ] establishing that a linear number of variables is needed to

istinguish two graphs in first-order counting logic. Graph constructions based on XOR formulas
ave also been used to prove lower bounds on the quantifier depth of C 

k [ 20 , 30 ]. We remark
ournal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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hat for our result we have to use a slightly different encoding of XOR formulas into relational
tructures rather than graphs. 

In proof complexity, various flavors of XOR formulas (usually called Tseitin formulas when used
o encode the handshaking lemma saying that the sum of all vertex degrees in an undirected graph
as to be an even number) have been employed to obtain lower bounds for proof systems such
s resolution [ 45 ], polynomial calculus [ 15 ], and bounded-depth Frege [ 6 , 28 , 42 ]. Such formu-
as have also played an important role in many lower bounds for the Positivstellensatz/sums-of-
quares proof system [ 22 , 36 , 44 ] corresponding to the Lasserre semidefinite programming hi-
rarchy, which has been the focus of much recent interest in the context of combinatorial opti-
ization. 1 Another use of XOR in proof complexity has been for hardness amplification, where

ne takes a (typically non-XOR) formula that is moderately hard with respect to some complex-
ty measure, substitutes all variables by exclusive ors over pairwise distinct sets of variables, and
hen shows that the new XORified formula must be very hard with respect to some other (more
mportant) complexity measure. This technique was perhaps first made explicit in Reference [ 7 ]
attributed there to personal communication with Alekhnovich and Razborov, with a note that
t is also very similar in spirit to an approach used in Reference [ 11 ]) and has later appeared in,
.g., References [ 5 , 9 , 10 , 14 , 19 ]. An even more crucial role in proof complexity is played by well-
onnected so-called expander graphs . For instance, given a formula in conjunctive normal form
CNF) one can look at its bipartite clause-variable incidence graph, or some variant of the CVIG
erived from the combinatorial structure of the formula, and prove that if this graph is an ex-
ander, then this implies that the formula must be hard for proof systems such as resolution [ 11 ]
nd polynomial calculus [ 1 , 40 ]. 

In a striking paper [ 43 ], the author combines XORification and expansion in a simple (with
indsight) but amazingly powerful way. Namely, instead of replacing every variable by an XOR
ver new, fresh variables, Razborov recycles variables from a much smaller pool, thus decreasing
he total number of variables. This means that the hardness amplification proofs no longer work,
t least not in their current form, since they crucially use that all new substitution variables are
istinct. But here expansion come into play. If the pattern of variable substitutions is described
y a strong enough bipartite expander, then it turns out that locally there is enough “freshness”
ven among the recycled variables to make the hardness amplification go through over a fairly
ide range of the parameter space. And, since the formula has not only become harder but has

lso had the number of variables decreased, this can be viewed as a kind of hardness compression

r hardness condensation . 
What we do in this article is to first revisit Immerman’s old quantifier depth lower bound for

rst-order counting logic [ 30 ] and observe that the construction can be used to obtain an im-
roved scalable lower bound for the k-variable fragment. We then translate Razborov’s hardness
ondensation technique [ 43 ] into the language of finite variable logics and use it—perhaps some-
hat amusingly applied to XORification of XOR formulas, which is usually not the case in proof

omplexity—to reduce the domain size of relational structures while maintaining the minimal
uantifier depth required to distinguish them. 

.5 Outline of This Article 

he rest of this article is organized as follows: In Section 2 , we describe how to translate XOR for-
ulas to relational structures and play combinatorial games on these structures. This then allows
 No proof complexity is needed in this article, and so readers unfamiliar with these proof systems need not worry—this is 

ust an informal overview. However, readers interested in a more in-depth treatment of this topic can consult the survey 

hapter cited in Reference [ 16 ] or the book cited in Reference [ 37 ]. 

Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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s to state our main technical lemmas in Section 3 and show how these lemmas yield our results.
urning to the proofs of these technical lemmas, in Section 4 , we present a version of Immerman’s
uantifier depth lower bound for XOR formulas, and in Section 5 , we apply Razborov’s hardness
ondensation technique to these formulas. Finally, in Section 6 , we make some concluding remarks
nd discuss possible directions for future research. Some proofs of technical results needed in the
rticle are deferred to Appendix A . 

 FROM XOR FORMULAS TO RELATIONAL STRUCTURES 

n this article all structures are finite and defined over a relational signature σ . We use the letters
, E, and R for unar y, binar y, and r -ar y relation symbols, respectively, and let X 

A , E 

A , and R 

A 

e their interpretation in a structure A. We write V (A) to denote the domain of the structure A.
he k-variable fragment of first-order logic L 

k consists of all first-order formulas that use at most
different variables (possibly re-quantifying them as in Equation ( 1.1 )). We also consider k-variable

rst-order counting logic C 

k , which is the extension of L 

k by counting quantifiers ∃ ≥i x φ (x ) , stating
hat there exist at least i elements u ∈ V (A) such that ( A, u) |= φ ( x ) . For a survey of finite variable
ogics and their applications, we refer the reader to, e.g., Reference [ 23 ]. 

An �-XOR constraint is a tuple (x 1 , . . . , x � , a ) consisting of � distinct Boolean variables and a
oolean value a ∈ { 0 , 1 } . We refer to � as the width of the constraint. An assignment α satisfies

x 1 , . . . , x � , a ) if α (x 1 ) + · · · + α (x � ) ≡ a ( mod 2 ). An �-XOR formula F is a conjunction of XOR
onstraints of width at most � and is satisfied by an assignment α if α satisfies all constraints in F .

For every �-XOR formula F on n variables, we can define a pair of 2 n-element structures A =

(F ) and B = B (F ) that are isomorphic if and only if F is satisfiable. The domain of the structures
ontains two elements x 0 i and x 1 i for each Boolean variable x i . There is one unary predicate X i 

or every variable x i satisfied by the corresponding two elements x 0 i and x 1 i . Hence, these unary

elations partition the domain of the structures into two-element sets, i.e., X 

A 

i = X 

B 
i = {x 0 i , x 

1 
i }.

o encode the XOR constraints, we introduce one m-ary relation R m 

for every 1 ≤ m ≤ � and set 

R 

A 

m 

= 
{ (
x a 1 i 1 
, . . . , x a m 

i m 

) 			 (x i 1 , . . . , x i m 

, a ) ∈ F , ∑ 

i a i ≡ 0 ( mod 2 ) 
} 

(2.1a)

nd 

R 

B 
m 

= 
{ (
x a 1 i 1 
, . . . , x a m 

i m 

) 			 (x i 1 , . . . , x i m 

, a ) ∈ F , ∑ 

i a i ≡ a ( mod 2 ) 
} 
. (2.1b)

Every bijection β between the domains of A (F ) and B (F ) that preserves the unary relations X i 

an be translated to an assignment α for the XOR formula via the correspondence 

α (x i ) = 0 ⇔ β (x 0 i ) = x 
0 
i ⇔ β (x 1 i ) = x 

1 
i (2.2a)

nd 

α (x i ) = 1 ⇔ β (x 0 i ) = x 
1 
i ⇔ β (x 1 i ) = x 

0 
i . (2.2b)

Moreover, it is not hard to show that such a bijection defines an isomorphism between A (F )
nd B (F ) if and only if the corresponding assignment satisfies F . See Figure 1 for a small example
llustrating the construction. 

This kind of encodings of XOR formulas into relational structures has been very useful for
roving lower bounds for finite variable logics in the past. Our transformation of XOR constraints
f width � into �-ary relational structures resembles the way Gurevich and Shelah [ 27 ] encode
OR formulas as hypergraphs. It is also closely related to the way Cai, Fürer, and Immerman [ 17 ]
btain two non-isomorphic graphs G and H from an unsatisfiable 3-XOR formula F in the sense
hat G and H can be seen to be the incidence graphs of our structures A (F ) and B (F ). 
ournal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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Fig. 1. Structure encoding of F = {(x 7 , x 8 , 1 )}. 
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To prove our main result, we make use of the combinatorial characterization of quantifier depth
f finite-variable logics in terms of pebble games for L 

k and C 

k , which are played on two given
elational structures. Since in our case the structures are based on XOR formulas, for convenience,
e will consider a simplified combinatorial game that is played directly on the XOR formulas

ather than on their structure encodings. We first describe this game and then show in Lemma 2.1
hat this yields an equivalent characterization. 

The r -round k-pebble game is played on an XOR formula F by two players, whom we will refer
o as Player 1 and Player 2. A position in the game is a partial assignment α of at most k variables
f F and the game starts with the empty assignment. In each round, Player 1 can delete some
ariable assignments from the current position (he chooses some α ′ ⊆ α ). If the current position
ssigns values to exactly k variables, then Player 1 has to delete at least one variable assignment.
fterwards, he chooses some currently unassigned variable x and asks Player 2 for its value. She
nswers by either 0 or 1 (independently of any previous answers to the same question) and adds
his variable assignment to the current position. 

A winning position for Player 1 is an assignment falsifying some constraint in F . Player 1 wins
he r -round k-pebble game if he has a strategy to win every play of the k-pebble game within
t most r rounds. Otherwise, we say that Player 2 wins (or survives) the r -round k-pebble game.
layer 1 wins the k-pebble game if he wins the r -round k-pebble game within a finite number
f rounds r . Note that if Player 1 wins the k-pebble game, then he can always win the k-pebble

ithin 2 k n 

k+1 rounds, because there are at most 
∑ k 

i= 0 2 
i 
(
n 
i 

)
≤ 2 k n 

k+1 different positions with at

ost k pebbles on n-variable XOR formulas. We say that Player 1 can reach a position β from a
osition α within r rounds if he has a strategy such that in every play of the r -round k-pebble
ame starting from position α he either wins or ends up with position β . 

As a side remark, we note that if we expand the XOR formula to CNF, then our pebble game
s the same as the so-called Boolean existential pebble game played on this CNF encoding and
herefore also characterizes the resolution width required for the corresponding CNF formula as
hown in Reference [ 2 ]. Intuitively, it is this correspondence that enables us to apply the proof
omplexity techniques from Reference [ 43 ] in our setting. We will not need to use any concepts
rom proof complexity in this article, however, but will present a self-contained proof, and so we
o not elaborate further on this connection. 
Let us now show that the game described above is equivalent to the pebble game for L 

k and to
he bijective pebble game for C 

k played on the structures A (F ) and B (F ). 

Lemma 2.1. Let k, p, r be integers such that r > 0 and k ≥ p and let F be a p-XOR formula giv-

ng rise to structures A = A (F ) and B = B (F ) as described in the paragraph preceding Equations

 2.1a ) and ( 2.1b ). Then the following statements are equivalent: 

(a) Player 1 wins the r -round k-pebble game on F . 

(b) There is a k-variable first-order sentence φ ∈ L 

k of quantifier depth r such that A (F ) |= φ
and B (F ) � |= φ. 
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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(c) There is a k-variable sentence in first-order counting logic φ ∈ C 

k of quantifier depth r such

that A (F ) |= φ and B (F ) � |= φ. 

(d) The (k − 1 )-dimensional Weisfeiler–Leman procedure can distinguish between A (F ) 
and B (F ) within r refinement steps. 

Proof. Let us start by briefly recalling known characterizations in terms of Ehrenfeucht-Fraïssé
ames of L 

k [ 4 , 31 ] and C 

k [ 17 , 29 ]. In both cases the game is played by two players, called Spoiler
nd Duplicator, on the two structures A and B. Positions in the games are partial mappings
 = {(u 1 , v 1 ), . . . , (u i , v i )} from V (A) to V (B) of size at most k . The games start from the empty
osition and proceed in rounds. At the beginning of each round in both games, Spoiler chooses
 

′ ⊆ p with | p ′ | < k . 

—In the L 

k -game, Spoiler then selects either some u ∈ V (A) or some v ∈ V (B) and Duplicator
responds by choosing an element v ∈ V (B) or u ∈ V (A) in the other structure. 

—In the C 

k -game, Duplicator first selects a global bijection f : V (A) → V (B) and Spoiler
chooses some pair ( u, v ) ∈ f . (If |V ( A) | � |V ( B) |, then Spoiler wins the C 

k -game
immediately.) 

The new position is p ′ ∪ { (u , v )} . Spoiler wins the r -round L 

k / C 

k game if he has a strategy to
each within r rounds a position p that does not define an isomorphism on the induced substruc-
ures. 2 Both games characterize equivalence in the corresponding logics: Spoiler wins the r -round
 

k / C 

k game if and only if there is a sentence φ ∈ L 

k / C 

k of quantifier depth r such that A |= φ
nd B � |= φ. 

When these games are played on the two structures A (F ) and B (F ) obtained from an XOR
ormula F , it is not hard to verify that both games are equivalent to the k-pebble game on
. To see this, we identify Spoiler with Player 1, Duplicator with Player 2, and partial map-

ings p = {(x a i i , x 
b i 
i ) | i ≤ �} with partial assignments α = {x i �→ a i ⊕ b i | i ≤ �} . Because of the

 i -relations, we can assume that partial assignments of any other form will not occur, as they
re losing positions for Duplicator. To formalize this proof strategy, we observe that the direction
 b ) ⇒ ( c ) is trivial and handle the two remaining cases ( a ) ⇒ ( b ) and ( c ) ⇒ ( a ) by proving the con-
rapositive. Since the equivalence between ( c ) and ( d ) was proven in Reference [ 17 ], this completes
he proof. 

To obtain ¬ ( b ) ⇒ ¬ ( a ), assume that Duplicator has a strategy to survive the L 

k -game for
 rounds on A (F ) and B (F ). To devise a strategy for Player 2 on F , we identify every position

= {x i �→ b i | i ≤ �} in the k-pebble game on F with the position p (α ) = { (x 0 i , x 
b i 
i ) | i ≤ �} in the

 

k -game. The strategy of Player 2 is now as follows: If Player 1 asks for x i , then Player 2 answers
ith the value b ∈ {0 , 1 } such that x b i ∈ V ( B ( F )) is the answer of Duplicator when Spoiler peb-

les x 0 i ∈ V ( A ( F ) ) . Recall that the X i -relations force Duplicator to answer with one of the two

lements x 0 i , x 
1 
i in her strategy. By the definition of the structures, a position α on F is non-losing

or Player 2 if and only if p (α ) is non-losing for Duplicator. 
For the direction ¬ ( a ) ⇒ ¬ ( c ) in the lemma, let us suppose that Player 2 has a strategy to survive

he k-pebble game for r rounds. For every position p = {(x a i i , x 
b i 
i ) | i ≤ �} in the C 

k -game, we
et α (p ) = { x i �→ a i ⊕ b i | i ≤ �} be the corresponding position in the k-pebble game. We develop
uplicator ’s strategy in the C 

k -game and let p with |p | < k be the position in the current round. We
ave to show that there is a bijection f : V (A) → V (B) such that for every choice of x a ∈ V ( A ( F ))
i 

 This implies that in the C 

k -game, we can assume that Duplicator always chooses a bijection f that is consistent with p ′ , 
s otherwise Spoiler can win immediately. 
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he position α ( p ∪ {( x a i , f ( x 
a 
i ) ) }) is the successor of α (p) in the k-pebble game on F when Player 1

sks for x i . To construct the bijection f , we let c i be the answer according to the strategy of Player 2
hen asked for x i in position α (p) and set f (x a i ) = x 

a⊕c i 
i for all i ∈ [ n] and a ∈ { 0 , 1 } . Note that

ith this definition, we get α ( p ∪ {( x a i , f ( x 
a 
i ) ) } ) = α (p ) ∪ { x i �→ c i } for all i ∈ [ n] and a ∈ { 0 , 1 } .

ince a position p is non-losing for Duplicator if and only if α (p) is non-losing for Player 2, the
emma is proven. �

 TECHNICAL LEMMAS AND PROOFS OF MAIN THEOREMS 

o prove our lower bounds of the quantifier depth of finite variable logics in Theorem 1.1 and the
umber of refinement steps of the Weisfeiler–Leman algorithm in Theorems 1.2 and 1.3 , we utilize
he characterization in Lemma 2.1 and show that there are n-variable XOR formulas on which
layer 1 is able to win the k-pebble game but cannot do so in significantly less than n 

k/ log k rounds.
he next lemma states this formally and also provides a tradeoff as the number of pebbles increases.

Lemma 3.1 (Main Technical Lemma). There is an absolute constant K 0 ∈ N 

+ such that for in-

egers k lo , k hi , and n satisfying K 0 ≤ k lo ≤ k hi ≤ n 

1 /6 /k lo there is an XOR formula F with n vari-

bles such that Player 1 wins the k lo -pebble game on F , but does not win the k hi -pebble game within

 

k lo / (10 log k hi )−1 / 5 rounds. 

Note that there is a limit to how far k lo and k hi can be from each other for the lemma to make
ense—the statement becomes vacuous if k lo ≤ 2 log k hi . Let us see how this lemma yields the the-
rems in Section 1 . 

Proof of Theorem 1.1 . This theorem follows immediately from Lemmas 2.1 and 3.1 , but let us
rite out the details for clarity. By setting k lo = k hi = k in Lemma 3.1 , we can find XOR formulas
ith n variables such that Player 1 wins the k-pebble game on F n but needs more than n 

εk/ log k 

ounds to do so (provided we choose ε < 1 / 10 and K 0 large enough). We can then plug these XOR
ormulas into Lemma 2.1 to obtain n-element structures A n = A (F n ) and B n = B (F n ) that can be
istinguished in the k-variable fragments of first-order logic L 

k and first-order counting logic C 

k ,
ut where this requires sentences of quantifier depth at least n 

εk/ log k . �

Proof of Theorem 1.2 . If we let F n be the XOR formula from Lemma 3.1 for k lo = k hi = k + 1 ,
hen by Lemma 2.1 it holds that the structures A (F n ) and B (F n ) will be distinguished by the

-dimensional Weisfeiler–Leman algorithm, but only after n 

ε ( k+1 )/ log ( k+1 ) ≥ n 

εk/ log k refinement
teps. Hence, computing the stable coloring of either of these structures requires at least n 

εk/ log k 

efinement steps (since they would be distinguished earlier if at least one of the computations
erminated earlier). �

Proof of Theorem 1.3 . This is similar to the proof of Theorem 1.2 , but setting k lo = � log n 

c � + 1
nd k hi = � n 

1 /7 � + 1 in Lemma 3.1 . �

The proof of the tradeoff between the number of pebbles versus number of rounds in Lemma 3.1
plits into two steps. We first establish a rather weak lower bound on the number of rounds in the
ebble game played on suitably chosen m-variable XOR formulas for m � n. We then transform
his into a much stronger lower bound for formulas over n variables using hardness condensation.
o help the reader keep track of which results are proven in which setting, in what follows, we
ill write � lo and � hi to denote parameters depending on m and k lo and k hi to denote parameters
epending on n. 
To implement the first step in our proof plan, we use tools developed by Immerman [ 30 ] to

stablish a lower bound as stated in the next lemma. 

Lemma 3.2. For all � hi , m ≥ 3 there is an m-variable 3-XOR formula F � hi 
m 

on which Player 1 
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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(a) wins the 3-pebble game, but 

(b) does not win the � hi -pebble game within max (3 , 1 
� log � hi � m 

1 /(1 + � log � hi �) − 2 ) rounds. 

We defer the proof of Lemma 3.2 to Section 4 , but at this point an expert reader might wonder
hy we would need to prove this lower bound at all, since a much stronger Ω(m) b ound on the
umber of rounds in the pebble game on 4-XOR formulas was already obtained by Fürer [ 20 ]. The
eason is that in Fürer’s construction Player 1 cannot win the game with few pebbles. However, it
s crucial for the second step of our proof, where we boost the lower bound but also significantly
ncrease the number of pebbles that are needed to win the game, that Player 1 is able to win the
riginal game with very few pebbles. 
The second step in the proof of our main technical lemma is carried out by using the tech-

iques developed by Razborov [ 43 ] and applying them to the XOR formulas in Lemma 3.2 . Roughly
peaking, if we set k lo = k hi = k for simplicity, then the number of variables decreases from m to
 ≈m 

1 /k , whereas the m 

1 / log k round lower bound for the k-pebble game stays essentially the same
nd hence becomes n 

k/ log k in terms of the new number of variables n. The properties of hardness
ondensation are summarized in the next lemma, which we prove in Section 5 . To demonstrate
he flexibility of this tool, we state the lemma in its most general form—readers who want to see
n example of how to apply it to the XOR formulas in Lemma 3.2 can mentally fix p = 3 , � lo = 3 ,
 ≈m 

1 / log � hi , and Δ ≈ � hi / 3 when reading the statement of the lemma below. 

Lemma 3.3 (Hardness Condensation Lemma). There exists an absolute constant Δ0 ∈ N 

+ such

hat the following holds: Let F be an m-variable p-XOR formula and suppose that we can choose

arameters � lo > 0 , � hi ≥ Δ0 � lo and r such that Player 1 

(a) has a winning strategy for the � lo -pebble game on F , but 

(b) does not win the � hi -pebble game on F within r rounds. 

Then for any Δ satisfying Δ0 ≤ Δ ≤ � hi /� lo and (2 � hi Δ) 2 Δ ≤ m there is a (Δp)-XOR formula H 

ith � m 

3 /Δ� variables such that Player 1 

(a) has a winning strategy for the (Δ� lo )-pebble game on H , but 

(b) does not win the � hi -pebble game on H within r/ (2 � hi ) rounds. 

Taking Lemmas 3.2 and 3.3 on faith for now, we are ready to prove our main technical lemma

ielding an n 

Ω(k / log k ) lower bound on the number of rounds in the k-pebble game. 

Proof of Lemma 3.1 Let Δ0 be the constant in Lemma 3.3 . We let 

K 0 ≥ 3 Δ0 + 9 (3.1)

e an absolute constant, the precise value of which will be determined by calculations later in the
roof. We are given k hi , k lo , and n satisfying the conditions 

K 0 ≤ k lo ≤ k hi ≤ n 

1 /6 /k lo (3.2)

n Lemma 3.1 . Let us set 

� hi : = k hi (3.3a)

nd 

m : = n 

�k lo /9 � (3.3b)

nd apply Lemma 3.2 (which is in order, since � lo ≥ 3 and m ≥ 3 by inequalities ( 3.1 ) and ( 3.2 )).
his yields an m-variable 3-XOR formula on which Player 1 wins the 3-pebble game but cannot
ournal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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in the � hi -pebble game within 

r : = 1 
� log � hi � m 

1 /(1 + � log � hi �) − 2 (3.3c)

rounds. As a side remark, we note that this lower bound term might vanish if k lo and k hi were
o far apart from each other ( k lo ≤ 2 log k hi ), but recall that in this case the statement of Lemma 3.1
ecomes vacuous anyway. Therefore, in what follows, we assume without loss of generality that
 ≥ 1 . Now, we can apply hardness condensation as in Lemma 3.3 to the formula provided by
emma 3.2 , where we fix parameters 

p : = 3 , (3.4a)

� lo : = 3 , (3.4b)

nd 

Δ : = 3 �k lo / 9 � . (3.4c)

To verify that our choice of parameters is legal, note that in addition to r ≥ 1 we also have � lo > 0
nd 

� hi = k hi ≥ K 0 > 3 Δ0 = Δ0 � lo . (3.5)

hus, the assumptions needed for ( a ) and ( b ) are satisfied by the XOR formula obtained from
emma 3.2 . To confirm that Δ chosen as in Equation ( 3.4c ) satisfies the conditions in Lemma 3.3 ,
bserve that 

Δ0 ≤ 3 �K 0 / 9 � ≤ 3 �k lo / 9 � = Δ ≤ k lo / 3 ≤ k hi / 3 = � hi /� lo . (3.6)

urthermore, since Δ ≤ k lo / 3 and � hi = k hi ≤ n 

1 /6 /k lo , we get 

(2 � hi Δ) 2 Δ ≤
(

2 

3 
n 

1 /6 
)2 Δ

≤ n 

Δ/3 = m . (3.7)

ince m 

3 /Δ = n, Lemma 3.3 provides us with an n-variable XOR formula on which according to ( a’ )
layer 1 has a winning strategy for the (3 Δ)-pebble game and hence also for the game with k lo ≥
 �k lo / 9 � = 3 Δ pebbles. Moreover, by ( b’ ) it holds that Player 1 needs more than r / (2 � hi ) = r / (2 k hi )
ounds to win the k hi -pebble game. To complete the proof, we observe that if we choose K 0 large
nough, then for n > k hi ≥ k lo ≥ K 0 it holds that 

r 

2 k hi 
= 

1 

2 k hi � log k hi � 
n 

�k lo / 9 �/ (1 + � log k hi �) − 1 

k hi 

[ 
by (3.3b) and (3.3c) 

] 

≥ 6 n 

1 /5 

n 

1 /6 log n 

n 

�k lo / 9 �/ (1 + � log k hi �)−1 / 5 − 1 

k hi 

[ 
since k hi ≤ n 

1 /6 
] 

(3.8)

≥ n 

k lo / (10 log k hi )−1 / 5 
[ 
for large enough n, k hi , and k lo . 

] 
e now choose the constant K 0 large enough so all conditions encountered in the calculations

bove are valid. This establishes the lemma. �

 XOR FORMULAS OVER HIGH-DIMENSIONAL PYRAMIDS 

e now proceed to establish the k-pebble game lower bound stated in Lemma 3.2 . Our XOR
ormulas will be constructed over directed acyclic graphs (DAGs), as described in the following
efinition: 

Definition 4.1. Let G be a DAG with sources S and a unique sink z. The XOR formula xor (G)
ontains one variable v for every vertex v ∈ V (G) and consists of the following constraints: 

(a) (s, 0 ) for every source s ∈ S , 
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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(b) (v, w 1 , . . . , w � , 0 ) for all non-sources v ∈ V (G) \ S with in-neighbors N 

− (v ) =
{ w 1 , . . . , w � } , 

(c) (z, 1 ) for the unique sink z. 

Note that the formula xor (G) is always unsatisfiable, since all source vertices are forced to 0
y ( a ), which forces all other vertices to 0 in topological order by ( b ), contradicting ( c ) for the sink.
ncidentally, these formulas are somewhat similar to the pebbling formulas defined in Reference
 11 ], which have been very useful in proof complexity (see the surveys cited in References [ 16 , 41 ]
or more details). The difference is that pebbling formulas state that a vertex v is true if and only
f all of its in-neighbors are true, whereas xor (G) states that v is true if and only if the parity of
he number of true in-neighbors is odd. 

It is clear that one winning strategy for Player 1 is to ask first about the sink z, for which
layer 2 has to answer 1 (or lose immediately) and then about all the in-neighbors of the sink until
he answer for one vertex v is 1 (if there is no such vertex, then Player 2 again loses immediately).
t this point, Player 1 can forget all other vertices and then ask about the in-neighbors of v until
 1-labelled vertex w is found and then continue in this way to trace a path of 1-labelled vertices
ackwards through the DAG until some source s is reached, which contradicts the requirement
hat s should be labelled 0. Formalizing this as an induction proof on the depth of G shows that if
he in-degree is bounded, then Player 1 can win the pebble game on xor (G) with few pebbles, as
tated in the next lemma. 

Lemma 4.2. Let G be a DAG with a unique sink and maximal in-degree d . Then Player 1 wins the

d + 1 )-pebble game on xor (G). 

As a warm-up for the proof of Lemma 3.2 , let us describe a weak lower bound from Reference
 30 ] for the complete binary tree of height h (with edges directed from the leaves to the root),
hich we will denote T h . By the lemma above, Player 1 wins the 3-pebble game on xor (T h ) in
(h ) steps by propagating 1 from the root down to some leaf. However, Player 2 has the freedom

o decide on which path she answers 1. Hence, she can safely respond 0 for a vertex v as long as it
olds for the lowest 1-labelled vertex w that we can find a non-pebbled leaf with a pebble-free path

eading to w without passing through v . In particular, if Player 2 is asked about vertices at least
layers below the lowest pebbled vertex for which the answer 1 was given, then she can answer 0

or 2 � − 1 queries. It follows that the height h provides a lower bound on the number of rounds
layer 1 needs to win the game, even if he has an infinite amount of pebbles. We remark that
his proof in terms of pebble-free paths is somewhat reminiscent of an argument by Cook [ 18 ] for
he so-called black pebble game corresponding to the pebbling formulas in Reference [ 11 ] briefly
iscussed above. 
The downside of this lower bound is that the height is only logarithmic in the number of ver-

ices and thus too weak for us, as we are shooting for a lower bound of the order of n 

1 / log k .
o get a better bound for the black pebble game, Cook instead considered so-called pyramid
raphs as in Figure 2 (a). These will not be sufficient to obtain strong enough lower bounds for
ur pebble game, however. 3 Instead, following Immerman, we consider a kind of high-dimensional
 For readers knowledgeable in pebbling, we comment that the problem is that the open-path argument in Reference [ 18 ] 

oes not work in a DAG-like setting for the XOR pebble game. To see this, consider a pyramid with a vertex row u, v, w

nd a second row p, q, r, s immediately below such that the edges are (p , u ), (q, u ) , (q, v ) , (r, v ) , (r, w ) , (s , w ). Then, if 

he values of u, w on the upper row and p, s on the lower row are known, there is still an open path via (q, v ) or (r, v ), 
hich is enough for the black pebbling lower bound for pyramids in Reference [ 18 ]. But in the XOR pebble game this 

eans that r and q are already fixed because of the XOR constraints, and so there is no “open path” with unconstrained 

ertices. 
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Fig. 2. Examples of high-dimensional pyramids (where all edges are directed upwards). 
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eneralization of these graphs, for which the lower bound on the number of rounds in the k-pebble
ame is still linear in the height h while the number of vertices is roughly h 

log k . 

Definition 4.3 ([ 30 ]). For d ≥ 1 , we define the (d + 1 )-dimensional pyramid of height h , denoted
y P 

d 
h 

, to be the following layered DAG. We let L, 0 ≤ L ≤ h be the layer number and set q d (L) : =
�L/d� and r d (L) : = L ( mod d ). Hence, for any L, we have L = q d (L) · d + r d (L). For integers x i ≥ 0
he vertex set is 

V 

(
P 

d 
h 

)
= 
{ 
(x 0 , . . . , x d−1 , L) 			 L ≤ h ; x i ≤ q d (L) + 1 if i < r d (L) ; x i ≤ q d (L) if i ≥r d (L) 

} 
, (4.1a)

here we say that L is the layer of the vertex (x 0 , . . . , x d−1 , L). The edge set E (P 

d 
h 

) consists of the
et of vertex pairs (

(x 0 , . . . , x r d (L) , . . . , x d−1 , L + 1 ), (x 0 , . . . , x r d (L) , . . . , x d−1 , L) 
)
, (

(x 0 , . . . , x r d (L) + 1 , . . . , x d−1 , L + 1 ), (x 0 , . . . , x r d (L) , . . . , x d−1 , L) 
) (4.1b)

for all vertices (x 0 , . . . , x d−1 , L) ∈ V (P 

d 
h 

) and layers L < h , so every vertex in layer L has exactly
wo in-neighbors from layer L + 1 . 

It might be easier to parse Definition 4.3 by noting that the (k d )th layer of P 

d 
h 

is a d-dimensional
ube of side length k . Intuitively, we then want to have incoming edges to each vertex u at the

(k d )th layer from all vertices v in the d-dimensional cube of side length k + 1 such that all co-
rdinates of v are at distance 0 or +1 from the coordinates of u. This would give a fan-in larger
han 2, however, and to avoid this, we expand in one dimension at a time to obtain a sequence
f multidimensional cuboids where in each consecutive cuboid the side length increases by one
n one dimension, until d layers later, we have a complete cube with side length k + 1 . We refer
he reader to Figure 2 (a) for an illustration of a 2-dimensional pyramid (i.e., a standard pyramid
raph) generated by stacking 1-dimensional cubes on top of one another and to Figure 2 (b) for a
-dimensional pyramid generated from 2-dimensional cuboids (where all the edges in the figures
re assumed to be directed upwards). The vertex (0 , . . . , 0 ) at the top of the pyramid is the unique
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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ink and all vertices at the bottom layer h are sources. Observe that it follows from the definition
hat |V ( P 

d 
h 

) | ≤ ( h + 1 ) d+1 . 
As high-dimensional pyramids have in-degree 2, Lemma 4.2 implies that Player 1 wins the

-pebble game on P 

d 
h 

. Recall that, as discussed in the proof sketch of the lemma, Player 1 starts
is winning strategy in the 3-pebble game by pebbling the sink of the pyramid and its two in-
eighbors. One of them has to be labelled 1. Then he picks up the two other pebbles and pebbles
he two in-neighbors of the vertex marked with 1 and so on. Continuing this strategy, he is able
o “move” the 1 all the way to the bottom, reaching a contradiction, in a number of rounds that is
inear in the height of the pyramid. This strategy turns out to be nearly optimal in the sense that
o move a 1 from the top to the bottom in P 

d 
h 

, as long as the total number of available pebbles is

t most 2 d , it makes no sense for Player 1 at any point in the game to pebble a vertex that is d or
ore levels away from the lowest level containing a pebble. 
The next lemma states a key property of pyramids in this regard. To state it, we first need to
ake a definition. 

Definition 4.4. We refer to a partial assignment M of Boolean values to the vertices of a DAG G 

s a labelling or marking of G. We say that M is consistent if no constraint of type ( b ) or ( c ) (i.e., a
onstraint on a non-source vertex) in the XOR formula xor (G) in Definition 4.1 is falsified by M.
e also say that M 

′ is consistent with M if M ∪ M 

′ is a partial assignment yielding a consistent
abelling of G. 

That is, a consistent labelling does not violate any constraint on any non-source vertex, but
ource vertex constraints ( a ) may be falsified. Such labellings are easy to find for high-dimensional
yramids. 

Lemma 4.5 ([ 30 ]). Let M be any consistent labelling of all vertices in a pyramid P 

d 
h 

from layer 0

o layer L. Then for every set S of 2 d − 1 vertices on or below layer L + d there is a consistent labelling

f the entire pyramid that extends M and labels all vertices in S with 0. 

To get some intuition why Lemma 4.5 holds, note that the d-dimensional pyramids are con-
tructed in such a way that they locally look like binary trees. In particular, every vertex v ∈ V (P 

d 
h 

)
ogether with all its predecessors at distance at most d form a complete binary tree. By the same
rgument as for the binary trees above, it follows that if v is labelled with 1, then Player 2 can
afely answer 0 up to 2 d − 1 times when asked about vertices d layers below v . However, the full
roof of Lemma 4.5 is more challenging and requires some quite subtle reasoning. For the con-
enience of the reader, we now present a slightly modified version of the proof in Reference [ 30 ]
ith notation and terminology adapted to this article. 
To formalize the intuitive argument above, we need some additional notation and technical

efinitions. Let us use the shorthand � x = (x 0 , . . . , x d−1 ). For a pyramid P 

d 
h 

, a coordinate j ∈
 0 , . . . , d − 1 } , and a layer L, we let 

slen ( j, L) : = max 

{ 
x j 

			 ( � x , L) ∈ V 

(
P 

d 
h 

)} 
(4.2)

e the side length in the jth dimension of the cuboid in layer L, i.e., the maximal value that can be
chieved in the jth coordinate in layer L, and for L 

′ ≥ L, we write 

Δslen (j, L, L 

′ ) : = slen (j, L 

′ ) − slen (j, L) (4.3)

o denote how much the cuboids in P 

d 
h 

grow in the jth dimension in between layers L and L 

′ . 

We define the frustum P 

d 
L,h 

to be the subgraph of P 

d 
h 

induced on the set { ( � x , L 

′ ) |L 

′ ≥ L} of all

ertices on layer L and below. We say that the wedge W (j, a, L) is the subgraph of P 

d 
h 

induced
ournal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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Fig. 3. Wedge W (0 , 3 , 5 ) ©; restricted frustums P 1 5 ,10 [ { 0 } , ∅ , {0 �→ 3 }] ✕ and P 1 5 ,10 [ ∅ , {0 }, {0 �→ 3 }] �. 
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n the vertices (x 0 , . . . , x j−1 , a, x j+1 , . . . , x d−1 , L) with fixed jth coordinate x j = a together with all
redecessors of these vertices. That is, the vertex set of W (j, a, L) is 

V 

(
W (j, a, L) 

)
= 
{ (
� x , L 

′ 
)
∈ V 

(
P 

d 
h 

) 			L 

′ ≥ L, a ≤ x j ≤ a + Δslen (j, L, L 

′ ) 
} 
. (4.4)

n important part in our proof will be played by subgraphs obtained by deleting wedges from
rustums. We define these subgraphs next. 

Fix a frustum P 

d 
L,h 

, two disjoint subsets of coordinates I lo , I hi ⊆ {0 , . . . , d − 1 }, I lo ∩ I hi = ∅ , and a

apping α : I lo ∪ I hi → N 0 such that α ( j ) ≤ slen ( j, L). We let the restricted frustum P 

d 
L,h 

[ I lo , I hi , α]

e the subgraph of the frustum P 

d 
L,h 

induced on the vertex set { (
� x , L 

′ 
)
∈ V (P 

d 
L,h ) 

			 ∀j ∈ I lo : x j > α (j ) + Δslen (j , L, L 

′ ); ∀j ∈ I hi : x j < α (j ) 
} 
. (4.5)

ote that no coordinates in I lo ∪ I hi are expanded, i.e., the cuboids will not grow in size in dimen-
ions I lo ∪ I hi as we move down the layers. For dimensions in I hi the coordinate set stays the same,
nd for dimensions in I lo the coordinate set shifts by an additive +1 every time the pyramid graph
rows in this direction. We say that a layered directed graph is a (d, q)-frustum if it is a restricted
rustum P 

d 
L,h 

[ I lo , I hi , α] where q coordinates are restricted, i.e., |I lo ∪ I hi | = q. 

To see how restricted frustums are obtained by deleting wedges from frustums, note that after
emoving the wedge W (j, a, L) from the frustum P 

d 
L,h 

, the remaining graph is the disjoint union

f the restricted frustums P 

d 
L,h 

[ { j} , ∅ , { j �→ a } ] and P 

d 
L,h 

[ ∅ , { j} , { j �→ a } ] . Figures 3 and 4 show 2D

nd 3D pyramids with a wedge © and a restricted frustums ✕ and �. 
We prove Lemma 4.5 by inductively cutting the pyramid into a wedge and restricted frustums

o the left and right of this wedge. It will be convenient to focus on (d, q)-frustums which grow in
he dimensions corresponding to the topmost d − q layers (as the one in Figure 4 ). More formally,
e say that an (d, q)-frustum P 

d 
L,h 

[ I lo , I hi , α] is top-expanding if 

{(L + j ) mod d | 0 ≤ j ≤ d − 1 − q} ∩ (I lo ∪ I hi ) = ∅ . (4.6)

s we have done for digraphs with unique sinks in Definition 4.1 , we identify with each (re-
tricted) frustum P the corresponding XOR formula xor (P ) containing all constraints given in
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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Fig. 4. Pyramid with wedge W (0 , 2 , L + 1 ) © and restricted frustum P 2 
L+1 ,10 [ ∅ , { 0 } , { 0 �→ 2 }] ✕ . 
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efinitions 4.1 ( a ) and ( b ). We do not include constraints for the vertices in the top layer as in ( c ),
owever, but instead provide a labelling assigning values to all vertices in that layer. 4 

We now state our inductive claim. Lemma 4.5 follows immediately once this claim has been
stablished, as the subgraph of a pyramid P 

d 
h 

on or below layer L is an (unrestricted) top-expanding

d, 0 )-frustum P 

d 
L,h 

and, in particular, xor ( P 

d 
h 

) with all vertices on or above layer L consistently

abelled is equivalent to xor ( P 

d 
L,h 

) with the same labelling of layer L. 

Claim 4.6. Let P be a top-expanding (d, q)-frustum and M L be any labelling of its top layer L.

hen for every set S of 2 d−q − 1 vertices on or below layer L + d − q there is a consistent labelling of

ll vertices in P that extends M L and labels every vertex in S with 0. 
 For readers more familiar with proof complexity language, our subgraphs correspond to formulas obtained by applying 

estrictions to xor ( P d 
h 

). 
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Fig. 5. Shapes of connected component between layers L and L + 1 expanding in dimension j. 
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The following proposition summarizes the core properties of frustums that we will use when
stablishing Claim 4.6 . 

Proposition 4.7. Let P = P 

d 
L,h 

[ I lo , I hi , α] be a restricted frustum with a labelling M L of all ver-

ices in the top layer L. Then the following holds: 

(a) There is a labelling M L+1 of all vertices in layer L + 1 of P that is consistent with M L . 

(b) Let M L+1 be any labelling of layer L + 1 in P that is consistent with M L and suppose that

P expands coordinate j from layer L to layer L + 1 , i.e., j = r d (L) and j � I lo ∪ I hi . Then for

any vertex ( � y , L + 1 ) in P it holds that the labelling M 

� y 

L+1 defined by 

M 

� y 

L+1 ( � x , L + 1 ) : = 

{ 

1 −M L+1 ( � x , L + 1 ) if x i = y i for all i � j, 
M L+1 ( � x , L + 1 ) otherwise 

is also consistent with M L . 

Proof. We first note that the set of XOR constraints between two layers L and L + 1 can be
artitioned into several connected components. Each of the components forms a “one-dimensional

ine” in the direction of the expanding coordinate j = r d (L) (disregarding the directions of the
dges; see the illustration in Figure 5 ). More formally, two vertices from layers L and L + 1 are
n the same line if and only if they agree on the coordinates x i for all i � j. These lines form the
onnected components of the graph induces on layers L and L + 1 . All such lines between layers L
nd L + 1 isomorphic and their shape depends on whether j ∈ I lo , j ∈ I hi , or j � I lo ∪ I hi . We remark
hat in Figures 5 (b) and 5 (c) the vertex with in-degree 1 and its predecessor form a binary XOR
onstraint in xor (P ). 

If the layer is not expanding (as depicted in Figures 5 (b) and 5 (c)) and the upper layer L is
ompletely labelled, then it is not hard to see that there is a unique consistent labelling of the lower-
evel vertices of each line (determined by propagating values from right to left in Figure 5 (b) and
rom left to right in Figure 5 (c)). As all lines are disjoint, this gives a unique labelling of the entire
ayer L + 1 that is consistent with the labelling of layer L. If the layer expands (i.e., , if j � I lo ∪ I hi as
llustrated in Figure 5 (a)), then we have more freedom. Indeed, if we label either the rightmost or
he leftmost vertex at the bottom layer with 0, then we have the same situation as in Figures 5 (b)
nd 5 (c), respectively. This concludes the proof of item 1 in the proposition. 

For item ( b ), first observe that the condition j � I lo ∪ I hi means that we are in the case depicted in
igure 5 (a). This means that if we have a consistent labelling of the upper and lower part of a line,
hen flipping all values at the lower level yields another consistent labelling. This is so, since every
OR constraint contains exactly two vertices from the lower part. Hence, flipping both of these
ertices does not change the parity of the variables in the XOR constraint but leaves the constraint
atisfied. As all lines between layers L and L + 1 are disconnected from each other, flipping all
alues in one line gives another consistent labelling for the whole layer L + 1 , which is precisely
hat is claimed in item ( b ). The proposition follows. �

Proof of Claim 4.6 . The proof is by induction over decreasing values of q, the base case being
 = d . As | S | = 2 d−q − 1 = 0 if q = d , in this case, we only have to ensure that there is a consistent
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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abelling of the entire frustum that is consistent with the labelling of the top layer. This follows
rom inductively applying Proposition 4.7 ( a ) layer-by-layer. 

For the inductive step, assume that the claim holds for all top-expanding (d, q + 1 )-frustums. We
ant to prove it for a top-expanding (d, q)-frustum P = P 

d 
L,h 

[ I lo , I hi , α] . Let j = r d (L) = L mod d

e the dimension that expands from layer L to L + 1 . As P is top-expanding and q < d , we have
 � I lo ∪ I hi . For some well-chosen a ∈ [0 , slen (j, L + 1 )] to be specified shortly, we partition P on
nd below layer L + 1 into the wedge 

W (j, a, L + 1 ) (4.7a)

nd two disjoint (d, q + 1 )-frustums: the “right” frustum 

P 

d 
L+1 ,h [ I lo ∪ { j} , I hi , α ∪ { j �→ a } ] (4.7b)

nd the “left” frustum 

P 

d 
L+1 ,h [ I lo , I hi ∪ { j} , α ∪ { j �→ a } ] (4.7c)

the latter is depicted by ✕ in Figure 4 ). We choose the position a of the wedge such that both

d, q + 1 )-frustums in Equations ( 4.7b ) and ( 4.7c ) contain at most ( | S | − 1 )/ 2 ≤ 2 d−(q+1 ) − 1 vertices
rom S (which implies that the wedge ( 4.7a ) contains at least one vertex from S). To be more specific,
e choose the largest a ≥ 0 such that the left frustum ( 4.7c ) contains at most ( | S | − 1 )/ 2 vertices
 a ⊆ S . Such an a exists as S 0 = ∅ . 

If a reached the maximum slen (j, L + 1 ), then empty right frustum ( 4.7b ) clearly contains no
ertices from S . Otherwise, let S a+1 be the set of vertices from S left of the wedge at position a + 1 .
y the choice of a , we have | S a+1 | > ( | S | − 1 )/ 2 . Furthermore, because all vertices in S are below

ayer L + 1 , it follows that S a+1 \ S a is contained in the wedge ( 4.7a ) at position a . Hence, the right
rustum ( 4.7b ) contains at most | S \ S a+1 | ≤ ( | S | − 1 )/ 2 vertices. 

Now, we proceed as follows: First, we use Proposition 4.7 1 to obtain any consistent labelling of
ll vertices in layer L + 1 . Consider the set of all vertices v = ( � x , L + 1 ) in layer L + 1 with x j = a ,
.e., the topmost vertices in the wedge ( 4.7a ). Note that this set of vertices form a hyperplane
hrough, and perpendicular to, the disconnected parallel lines discussed in Proposition 4.7 . We go
ver these vertices v one-by-one and flip every 1-labelled v to 0. As j is the expanding coordinate
rom layer L to L + 1 , after every such flip, we can apply Proposition 4.7 ( b ) to relabel the rest of the
ine through v as needed. In this way, all vertices in the top layer of the wedge ( 4.7a ), get labelled
y 0, and we label all other vertices in the wedge with 0 also. It follows from repeated application
f Proposition 4.7 ( b ) that the end result is a labelling of layer L + 1 that is consistent with M L . Note
hat this labels every vertex from S within the wedge with 0, and moreover layer L + 1 contains
o vertices from S outside of the wedge. This is because if some vertex from S is on layer L + 1 ,
hen we have by the assumption in Claim 4.6 that | S | = 2 d−q − 1 = 1 for d = q + 1 , and hence this
ne labelled vertex is guaranteed to be in the wedge by the choice of a . In this way, we obtain a
abelling for the top layer of both (d, q + 1 )-frustums, and we then apply induction to consistently
abel all vertices in both frustums in such a way that every vertex in S is set to 0. Now, we argue
hat the disjoint union of the all-zero labelling of the wedge and the consistent labellings of both
rustums is a consistent labelling of P. Clearly, every (non-source) constraint in xor (P ) that is
ntirely contained in the wedge is satisfied by the all-zero labelling of the wedge. In the same
ay, every constraint that is entirely contained in one of the two frustums is satisfied by their

onsistent labellings. It remains to consider constraints that contain variables from the wedge as
ell as from one of the frustums. By construction, those constraints have the form (v, w 1 , w 2 , 0 ),

or a vertex v with in-neighbors w 1 , w 2 , where the vertex v and one of its neighbors (say, w 1 )
s within the frustum and the other neighbor is inside the wedge. As the edge (w 1 , v ) inside the
rustum forms the binary constraint (v, w 1 , 0 ), it follows that the consistent labelling of the frustum
ournal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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uarantees that the parity of v and w 1 is even. Because w 2 is labelled 0 in the wedge, the merged
abelling satisfies (v, w 1 , w 2 , 0 ). The claim follows. �

As noted above, our proof of Claim 4.6 also establishes Lemma 4.5 . 
In Reference [ 30 ] log n-dimensional pyramids (where n is the number of vertices) are used to

rove a Ω(2 
√ 

log n ) lower bound on the quantifier depth of full first-order counting logic. The next
emma shows that if we instead choose the dimension to be logarithmic in the number of variables
i.e., pebbles) in the game, then we get an improved quantifier depth lower bound for the k-variable
ragment. 

Lemma 4.8. For every d ≥ 2 and height h , Player 1 does not win the 2 d -pebble game on xor ( P 

d 
h 

)
ithin h/ (d − 1 ) − 1 rounds. 

Proof. We show that Player 2 has a counter-strategy to answer consistently for at least �h/ (d −
 )� − 1 rounds, and therefore Player 1 needs at least �h/ ( d − 1 )� > h/ ( d − 1 ) − 1 rounds to win.
tarting at the top layer L 1 = 0 in round r = 1 , Player 2 maintains the invariant that at the start of
ound r she has a consistent labelling of all vertices from layer 0 to layer L r with the property that
here is no pebble on layers L r + 1 to L r + d − 1 . 

Whenever Player 1 places a pebble on or above layer L r Player 2 responds according to the
onsistent labelling and whenever Player 1 puts a pebble on or below layer L r + d she answers 0,
nd in both cases sets L r+1 = L r . Note that as long as Player 1 places pebbles in this way, the game
an go on forever. Since there are never more than 2 d − 1 pebbles left on vertices on or below
ayer L r + d (when Player 1 runs out of pebbles the next move must be a removal), the conditions
eeded for Lemma 4.5 to apply are never violated. 
Thus, the interesting case is when Player 1 places a pebble between layer L r + 1 and L r + d − 1 .

hen Player 2 uses Lemma 4.5 to extend her labelling to the first layer L r+1 > L r such that there is
o pebble on layers L r+1 + 1 to L r+1 + d − 1 , after which she answers the query according to the
ew labelling. It is worth noting that when Player 2 skips downward from layer L r to layer L r+1

he might jump over a lot of layers in one go, but if so, then there is at least one pebble for every
(d − 1 )th layer forcing such a big jump. We see that following this strategy Player 2 survives for
t least �h/ (d − 1 )� − 1 rounds, and this establishes the lemma. �

Putting the pieces together, we can now present the lower bound for the k-pebble game in
emma 3.2 . 

Proof of Lemma 3.2 . Recall that we want to prove that for all � hi ≥ 3 and m ≥ 3 there is an m-
ariable 3-XOR formula F on which Player 1 wins the 3-pebble game but cannot win the � hi -pebble

ame within 

1 
� log � hi � m 

1 /(1 + � log � hi �) − 2 rounds. If m < (5 � log � hi �) ( � log � hi �+1 ) , then the round lower

ound is trivial and we let F be for instance, the 3-variable formula xor ( P 

1 
1 ) plus m − 3 auxiliary

ariables on which Player 1 needs 3 rounds to win. Otherwise, we choose the formula to be F =
or ( P 

d 
h 

) for parameters d = � log � hi � and h = �m 

1 /(d+1 ) � − 1 . Note that P 

d 
h 

contains less than (h +

 ) d+1 ≤ m vertices and we can add dummy variables to reach exactly m. Since the graph P 

d 
h 

has
n-degree 2, Lemma 4.2 says that Player 1 wins the 3-pebble game as claimed in Lemma 3.2 ( a ). The
ower bound for the � hi -pebble game in Lemma 3.2 ( b ) follows from Lemma 4.8 and the observation
hat because h ≥ 5 d − 1 , we have h/ ( d − 1 ) ≥ ( h + 1 )/d and hence 

h/ (d − 1 ) − 1 ≥ (h + 1 )/d − 1 = 1 
� log � hi � 

⌊ 
m 

1 /(1 + � log � hi �) 
⌋ 
− 1 (4.8a)

≥ 1 
� log � hi � m 

1 /(1 + � log � hi �) − 2 . (4.8b)

The lemma follows. �
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 HARDNESS CONDENSATION 

n this section, we establish Lemma 3.3 , which shows how to convert an XOR formula into an
qually hard formula over fewer variables. As discussed in the introduction, this part of our con-
truction relies heavily on Razborov’s paper [ 43 ]. We follow his line of reasoning closely below,
ut translate it from proof complexity to a pebble game argument for bounded variable logics. 

A key technical concept in the proof is graph expansion. Let us define the particular type of
xpander graphs that we need and then discuss some crucial properties of these graphs. We use

tandard notation, letting G = (U 

. 
∪ V , E) denote a bipartite graph with left vertex set U and right

ertex set V . We let N 

G (U 

′ ) = { v | { u , v} ∈ E (G), u ∈ U 

′ } denote the set of neighbor vertices on the
ight of a left vertex subset U 

′ ⊆ U (and vice versa for right vertex subsets). 

Definition 5.1 (Boundary Expander). A bipartite graph G = (U 

. 
∪ V , E) is an m × n (s, c )-boundary

xpander graph if | U | = m, | V | = n, and for every set U 

′ ⊆ U , |U 

′ | ≤ s , it holds that |∂ G (U 

′ ) | ≥
| U 

′ | , where the boundary ∂ G (U 

′ ) is the set of all v ∈ N 

G (U 

′ ) having a unique neighbor in U 

′ ,
eaning that |N 

G (v ) ∩ U 

′ | = 1 . An (s, Δ, c )-boundary expanderis an (s, c )-boundary expander
here additionally |N 

G (u) | ≤ Δ for all u ∈ U , i.e., the graph has left degree bounded by Δ. 

In what follows, we will omit G from the notation when the graph is clear from context. 
In any (s, c )-boundary expander with expansion c > 0 , it holds that any left vertex subset U 

′ ⊆ U 

f size |U 

′ | ≤ s has a partial matching into V where in addition the vertices in U 

′ can be ordered
n such a way that every vertex u i ∈ U 

′ is matched to a vertex outside of the neighborhood of
he preceding vertices u 1 , . . . , u i−1 . The proof of this fact is sometimes referred to as a peeling

rgument . 

Lemma 5.2 (Peeling Lemma). Let G = (U 

. 
∪ V , E) be an (s, c )-boundary expander with s ≥ 1 and

 > 0 . Then for every set U 

′ ⊆ U , |U 

′ | = t ≤ s there is an ordering u 1 , . . . , u t of its vertices and a

equence of vertices v 1 , . . . , v t ∈ V such that v i ∈ N (u i ) \ N ({ u 1 , . . . , u i−1 } ). 
Proof. The proof is by induction on t . The base case t = 1 is immediate, since s ≥ 1 and c >

 implies that no left vertex can be isolated. For the inductive step, suppose the lemma holds
or t − 1 . To construct the sequence v 1 , . . . , v t , we first fix v t to be any vertex in ∂(U 

′ ), which has
o exist, since | ∂(U 

′ ) | ≥ c | U 

′ | > 0 . The fact that v t is in the boundary of U 

′ means that there is a
nique u t ∈ U 

′ such that |N (v t ) ∩ U 

′ | = {u t }. Thus, for this pair (u t , v t ), it holds that v t ∈ N (u t ) \
 (U 

′ \ { u t } ). By the induction hypothesis, we can now find sequences u 1 , . . . , u t−1 and v 1 , . . . , v t−1

or U 

′ \ {u t } such that v i ∈ N (u i ) \ N ({ u 1 , . . . , u i−1 } ), to which we can append u t and v t at the end.
he lemma follows. �

For a right vertex subset V 

′ ⊆ V in G = (U 

. 
∪ V , E), we define the kernel Ker (V 

′ ) ⊆ U to be the
et of all left vertices whose entire neighborhood is contained in V 

′ , i.e., 

Ker 
(
V 

′ 
)
= 
{ 
u ∈ U 

			N (u) ⊆ V 

′ 
} 
. (5.1)

e let G \ V 

′ denote the subgraph of G induced on ( U \ Ker ( V 

′ )) 
. 
∪ ( V \ V 

′ ). In other words, we
btain G \ V 

′ from G by first deleting V 

′ and afterwards all isolated vertices from U . 
The next lemma states that if G is an expander graph, then for any small enough right vertex

et V 

′ , we can always find a closure γ (V 

′ ) ⊇ V 

′ with a small kernel such that the subgraph G \ γ (V 

′ )
as good boundary expansion. The proof of this lemma (albeit with slightly different parameters)
an be found in Reference [ 43 ], but we also include it in Appendix A for completeness. 

Lemma 5.3 ([ 43 ]). Let G be an (s, 2 )-boundary expander. Then for every V 

′ ⊆ V with |V 

′ | ≤ s/ 2
here exists a subset γ (V 

′ ) ⊆ V with γ (V 

′ ) ⊇ V 

′ such that | Ker (γ (V 

′ ) ) | ≤ |V 

′ | and the induced sub-

raph G \ γ (V 

′ ) is an ( s/ 2 , 1 )-boundary expander. 
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Note that Lemma 5.3 does not provide us with information about how the closures of different
ets are related. In particular, if we want to choose closures of minimal size, then V 1 ⊆ V 2 does not
ecessarily imply γ (V 1 ) ⊆ γ (V 2 ). For Lemmas 5.2 and 5.3 to be useful, we need to know that there
xist good enough boundary expanders. To prove this, one can just fix a left vertex set U of size m
nd a right vertex set V of size n and then for every u ∈ U choose Δ neighbors from V uniformly
nd independently at random. A standard probabilistic argument shows that with high probability
his random graph is an m × n (s, Δ, 2 )-boundary expander for appropriately chosen parameters.

e state this formally as a lemma below. A similar lemma is proven in Reference [ 43 ], but we also
rovide a proof in Appendix A for the convenience of the reader. 

Lemma 5.4. There is an absolute constant Δ0 ∈ N 

+ such that for all integers Δ, s , and m satisfying

≥ Δ0 and (sΔ) 2 Δ ≤ m there exist m × � m 

3 /Δ� (s, Δ, 2 )-boundary expanders. 

For readers familiar with expander graphs from other contexts, it might be worth pointing out
hat the parameters above are different from what tends to be the standard expander graph settings
f s = Ω(m) and Δ = O (1 ). Instead, in Lemma 5.4 , we have s growing sublinearly in m and Δ need
ot be constant (although we still need Δ � log m/ log log m to satisfy the conditions of the lemma).

In what follows, unless otherwise stated G = (U 

. 
∪ V , E) will be an (s, 2 )-boundary expander for

 = 2 k . We will use such expanders when we do XOR substitution in our formulas, as described
ormally in the next definition. In words, variables in the XOR formula are identified with left
ertices U in G, the pool of new variables is the right vertex set V , and every variable u ∈ U in
n XOR constraint is replaced by an exclusive or 

⊕ 

v ∈N (u ) v over its neighbors v ∈ N (u). We

mphasize that in “standard” XORification as found in the proof complexity literature all new
ubstituted variables would be distinct, i.e., N (u 1 ) ∩ N (u 2 ) = ∅ for u 1 � u 2 . While this often makes
ormulas harder, it also increases the number of variables. Here, we use the approach in Reference
 43 ] to instead recycle variables from a much smaller set V in the substitutions, thus decreasing
he total number of variables. 

Definition 5.5 (XOR Substitution with Recycling). Let F be an XOR formula with Vars (F ) = U 

nd let G = (U 

. 
∪ V , E) be a bipartite graph. For every constraint C = (u 1 , . . . , u t , a ) in F , we let

[ G] be the constraint (v 

1 
1 , . . . , v 

z 1 
1 , . . . , v 

1 
t , . . . , v 

z t 
t , a ), where N (u i ) = {v 

1 
i , . . . , v 

z i 
i } for all 1 ≤ i ≤

. Taking unions, we let F [ G] be the XOR formula F [ G] = {C[ G] | C ∈ F }. 

When using an m ×m 

3 /Δ (s, Δ, 2 )-boundary expander as in Lemma 5.4 for substitution in an m-
ariable XOR formula F as described in Definition 5.5 , we obtain a new XOR formula F [ G] where
he number of variables has decreased significantly to m 

3 /Δ. The next lemma, which is at the heart
f our logic-flavored version of hardness condensation, states that a round lower bound for the
-pebble game on F implies a round lower bound for the k-pebble game on F [ G] . 

Lemma 5.6. Let k be a positive integer and let G be an m × n ( 2 k , 2 )-boundary expander. Then if

 is an XOR formula over m variables such that Player 2 wins the r -round k-pebble game on F , she

lso wins the r/ (2 k )-round k-pebble game on F [ G] . 

By way of comparison with Reference [ 43 ], we remark that a straightforward translation of
azborov’s technique would start with formulas on which Player 1 can win with few pebbles,
ut needs an almost linear number of rounds to win the game, even if he has an infinite amount
f pebbles. 5 Applying this without modification to Immerman’s construction, we would obtain
ery weak bounds (and, in particular, nothing interesting for constant k). Instead, as input to our
 In terms of resolution, this corresponds to formulas that are refutable in small width, but where every resolution refutation 

as almost linear depth. 
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ardness condensation lemma, we use a construction that has a round lower bound of n 

1 / log k and
how that for hardness condensation it is not necessary that the original formula is hard if the
umber of pebbles get too large. 
Before embarking on a formal proof of Lemma 5.6 , which is rather technical and will take the

est of this section, let us discuss the intuition behind it. The main idea to obtain a good strategy
or Player 2 on the substituted formula F [ G] is to think of the game as being played on F and
imulate the survival strategy there for as long as possible (which is where boundary expansion
omes into play). 

Let G = (U 

. 
∪ V , E) be an ( 2 k , 2 )-boundary expander as stated in the lemma. We have Vars (F ) =

 and Vars (F [ G] ) = V . Given a strategy for Player 2 in the r -round k-pebble game on F , we want
o convert this into a winning strategy for Player 2 for the r/ (2 k )-round k-pebble game on F [ G] .
 first approach (which will not quite work) is the following: 
While playing on the substituted formula F [ G] , Player 2 simulates the game on F . For every

osition β in the game on F [ G] , she maintains a corresponding position α on F , which is de-
ned on all variables whose entire neighborhood in the expander is contained in the domain of
, i.e., Vars ( α ) = Ker ( Vars ( β ) ) . The assignments of α should be defined in such a way that they
re consistent with β , i.e., such that α ( u) = 

⊕ 

v ∈N (u ) β ( v ). It then follows from the description of

ORification in Definition 5.5 that α falsifies an XOR constraint of F if and only if β falsifies an
OR constraint of F [ G] . 
Now, Player 2 wants to play in such a way that if β changes to β ′ in one round of the game

n F [ G] , then the corresponding position α also changes to α ′ in one round of the game on F .
ntuitively, this should be done as follows: Suppose that starting from a position β , Player 1 asks
or a variable v ∈ V . If v is not the last unassigned vertex in a neighborhood of some u ∈ U , i.e.,
er ( Vars ( β )) = Ker ( Vars ( β ) ∪ { v} ), then Player 2 can make an arbitrary choice, as α = α ′ is con-
istent with both choices. If v is the last free vertex in the neighborhood of exactly one vertex u,
.e., { u } = Ker ( Vars (β ) ∪ { v} ) \ Ker ( Vars (β ) ) , then Player 2 assumes that she was asked for u in the
imulated game on F . If in her strategy for the r -round k-pebble game on F she would answer with
n assignment a ∈ { 0 , 1 } that would yield the new position α ′ = α ∪ {u �→ a }, then in the game on
[ G] she now sets v to the right value b ∈ { 0 , 1 } such that the new position β ′ = β ∪ {v �→ b}
atisfies the consistency property α ′ ( u) = 

⊕ 

v ∈N (u ) β
′ ( v ). If Player 2 could follow this strategy,

hen the number of rounds she would survive the game on F [ G] would be lower-bounded by the
umber of rounds she survives in the game on F . 
There is a gap in this intuitive argument, however, namely, how to handle the case when the

ueried variable v completes the neighborhood of two (or more) vertices u 1 , u 2 at the same time.
f it holds that {u 1 , u 2 } ⊆ Ker ( Vars (β ) ∪ {v}) \ Ker ( Vars (β ) ) , then we have serious problems. Fol-
owing the strategy above for u 1 and u 2 separately can yield two different and conflicting ways
f assigning v , meaning that for the new position β ′ there will be no consistent assignment α ′

f Ker ( Vars (β ′ ) ) . 
To circumvent this problem and implement the proof idea above, we will use the boundary

xpansion of G to ensure that this problematic case does not occur. For instance, suppose that
he graph G 

′ = G \ Vars (β ), which is the induced subgraph of G on U \ Vars (α ) and V \ Vars (β ),
as boundary expansion at least 1. Then the bad situation described above with two variables

 1 , u 2 having neighborhood N 

G ′ (u 1 ) = N 

G ′ (u 2 ) = { v} in G 

′ cannot arise, since this would imply

 

G ′ ({u 1 , u 2 }) = ∅ , contradicting the expansion properties of G 

′ . Unfortunately, we cannot ensure
oundary expansion of G \ Vars (β ) for every position β , but we can apply Lemma 5.3 and extend
he current position to a larger one that is defined on the closure γ ( Vars (β ) ) and has the desired
xpansion property. Since Lemma 5.3 ensures that the domain Ker ( γ ( Vars ( β ) ) ) of our assignment α
nder construction is bounded by | α | ≤ | β | ≤ k , such an extension will still be good enough. 
ournal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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We now proceed to present a formal proof. When doing so, it turns out to be convenient for
s to prove the contrapositive of the statement discussed above. That is, instead of transforming
 strategy for Player 2 in the r -round k-pebble game on F to a strategy for the r/ (2 k )-round k-
ebble game on F [ G] for an ( 2 k , 2 )-boundary expander G, we will show that a winning strategy
or Player 1 in the game on the substituted formula F [ G] can be used to obtain a winning strategy
or Player 1 in the game on the original formula F . 

Suppose that β is any position in the k-pebble game on F [ G] , i.e., a partial assignment of vari-
bles in V . Since G is a ( 2 k , 2 )-boundary expander and | β | ≤ k , we can apply Lemma 5.3 to obtain
 superset γ ( Vars ( β )) ⊇ Vars ( β ) having the properties that | Ker ( γ ( Vars ( β ) ) ) | ≤ | Vars (β ) | and the
nduced subgraph G \ γ ( Vars (β ) ) is a (k, 1 ) -boundary expander. For the rest of this section, fix
 minimal such set γ (V 

′ ) for every V 

′ = Vars (β ) corresponding to a position β in the k-pebble
ame (where we note for later use that we have γ (∅ ) = ∅ by minimality). This will allow us to de-
ne formally what we mean by consistent positions in the two games on F and F [ G] , as described
ext. 

Definition 5.7 (Consistent Positions). Let α be a position in the pebble game on F , i.e., a partial
ssignment of variables in U , and let β be a partial assignment of variables in V corresponding
o a position in the pebble game on F [ G] . We say that α is consistent with β if there exists an
xtension βext ⊇ β with Vars ( βext ) = N ( Vars ( α )) ∪ Vars ( β ) such that for all u ∈ Vars (α ) it holds
hat α ( u) = 

⊕ 

v ∈N (u ) βext ( v ). 

Let β be a position in the k-pebble game on the XOR-substituted formula F [ G] and let γ (V 

′ ) be
he fixed, minimal closure of β chosen above. Then, we let Cons (β ) denote the set of all positions α
ith Vars ( α ) = Ker ( γ ( Vars ( β ) ) ) in the pebble game on F that are consistent with β . 

Observe that for α1 ⊆ α2 and β1 ⊆ β2 , it holds that if α2 is consistent with β1 , then so is α1 , and
f α1 is consistent with β2 , then α1 is consistent also with β1 . Furthermore, by Lemma 5.3 , we have
| α | ≤ | β | for all α ∈ Cons (β ). The next claim states the core inductive argument. 

Claim 5.8. Let β be a position on F [ G] for an ( 2 k , 2 )-boundary expander G and suppose that

layer 1 wins the k-pebble game on F [ G] from position β in i rounds. Then Player 1 has a strategy to

in the k-pebble game on F within 2 ki rounds from every position α ∈ Cons (β ). 

We note that this claim is just a stronger version of (the contrapositive of) Lemma 5.6 . 

Proof of Lemma 5.6 Assuming Claim 5.8 . Note that if r/ (2 k ) < 1 , then the lemma is trivially
rue, as Player 1 always needs at least one round to win the pebble game from the empty position.
therwise, we apply Claim 5.8 with parameters β = ∅ and i = r/ (2 k ). Since Cons (∅ ) = { ∅} , we
irectly get the contrapositive statement of Lemma 5.6 that if Player 1 wins the r/ (2 k )-round k-
ebble game on F [ G] , then he wins the r -round k-pebble game on F . �

All that remains for us to do now is to establish Claim 5.8 , after which the hardness condensation
emma will follow easily. 

Proof of Claim 5.8 . The proof is by induction on the number of rounds i . For the base case i = 0 ,
e have to show that if β falsifies an XOR constraint in F [ G] , then every assignment α ∈ Cons (β )

alsifies an XOR constraint in F . But if β falsifies a constraint of F [ G] , which by construction has
he form C[ G] for some constraint C from F , then by Definitions 5.5 and 5.7 it holds that every
∈ Cons (β ) falsifies C . 
For the induction step, suppose that the statement holds for i − 1 and assume that Player 1 wins

he k-pebble game on F [ G] from position β in i rounds. The ith round consists of two steps: 
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(1) Player 1 first chooses a subassignment β ′ ⊆ β . 
(2) He then asks for the value of one variable v ∈ V \ Vars ( β ′ ), to which Player 2 chooses an

assignment b ∈ {0 , 1 } yielding the new position β ′ ∪ {v �→ b}. 

As Player 1 has a strategy to win from β within i rounds, it follows that he can win from both
′ ∪ {v �→ 0 } and β ′ ∪ {v �→ 1 } within i − 1 rounds. By the inductive assumption, we then deduce

or the set of assignments 

Cons 
(
β ′ ∗v 

)
: = Cons 

(
β ′ ∪ { v �→ 0 } 

)
∪ Cons 

(
β ′ ∪ { v �→ 1 } 

)
(5.2)

onsistent with either β ′ ∪ {v �→ 0 } or β ′ ∪ {v �→ 1 } that the following statement holds: 

Subclaim 5.9. Player 1 can win the k-pebble game on F within 2 k (i − 1 ) rounds from all positions

n Cons (β ′ ∗v ). �

Note that a position is in Cons (β ′ ∗v ) if it is consistent with either β ′ ∪ { v �→ 0 } or β ′ ∪ { v �→ 1 } .
herefore, Cons (β ′ ∗v ) is the set of all positions over Ker ( γ ( Vars ( β ′ ) ∪ { v} ) ) that are consistent
ith β ′ . What remains to show is that from every position α ∈ Cons (β ) Player 1 can reach 

6 some
osition in Cons (β ′ ∗v ) within 2 k rounds. We split the proof into two steps, corresponding to the
wo steps in the move of Player 1 from position β . 

Subclaim 5.10. From every position α ∈ Cons (β ), Player 1 can reach some position in Cons (β ′ ) 
or β ′ ⊆ β within k rounds. 

Subclaim 5.11. From every position α ∈ Cons (β ′ ), Player 1 can reach some position in Cons (β ′ ∗
) within k rounds. 

Let us establish Subclaims 5.10 and 5.11 in reverse order. 

Proof of Subclaim 5.11 . Player 1 starts with an assignment αstart ∈ Cons (β ′ ), which is defined
ver the variables U start = Ker ( γ ( Vars ( β ′ ) ) ) , and wants to reach some assignment αend ∈ Cons (β ′ ∗
) defined over the variables U end = Ker ( γ ( Vars ( β ′ ) ∪ { v} ) ) . 
If Ker ( γ ( Vars ( β ′ ) ) ) = Ker ( γ ( Vars ( β ′ ) ∪ { v} ) ) , then Player 1 can choose αend = αstart . To see this,

ote that if αstart assigns a value to some u ∈ N (v ), then, since αstart ∈ Cons (β ′ ), it holds by
efinition 5.7 that N ( u) ⊆ γ ( Vars ( β ′ ) ) , and thus αstart is already consistent with β ′ ∪ {v �→ b} for

ome b ∈ { 0 , 1 } . Hence, Player 1 need not ask any question in this case, but the induction hypothe-
is immediately yields the desired conclusion. And if αstart does not assign values to any u ∈ N (v ),
hen it is consistent with β ′ ∪ {v �→ b} for any b ∈ { 0 , 1 } , since no additional parity constraints are
dded in Definition 5.7 . 

The more interesting case is when Ker ( γ ( Vars ( β ′ ) ) ) � Ker ( γ ( Vars ( β ′ ) ∪ { v} ) ) . Now, Player 1
rst deletes all assignments of variables in U start \ U end from αstart to get α0 . Since α0 ⊆ αstart and

start is consistent with β ′ by assumption, α0 is also consistent with β ′ . Afterwards, he asks for all
ariables in U 

′ = U end \ U start . We need to argue that regardless of how Player 2 answers, it holds
hat Player 1 reaches a position that is consistent with β ′ . This is where the peeling argument in
emma 5.2 is needed. 
As discussed above, by our choice of the closure γ ( Vars (β ′ )) (obtained using Lemma 5.3 ), we

now that the bipartite graph G 

′ = G \ γ ( Vars (β ′ )) is a (k, 1 )-boundary expander and furthermore
hat for U 

′ = U end \ U start it holds that | U 

′ | ≤ | U end | ≤ | Vars (β ′ ) ∪ { v} | ≤ k , as observed right after
efinition 5.7 . Hence, we can apply Lemma 5.2 to G 

′ and U 

′ to get an ordered sequence u 1 , . . . , u t 
 Recall that Player 1 can reach a position α ′ from a position α means that he has a strategy such that in every play of game 

tarting from position α he either wins or ends up with position α ′ . 
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atisfying N 

G ′ (u i ) \ N 

G ′ ({ u 1 , . . . , u i−1 } ) � ∅ . We will think of Player 1 as querying the (at most k)
ertices in U 

′ in this order, after which he ends up with a position αend defined on the variables U end .
To argue that the position αend obtained in this way is consistent with β ′ independently of how

layer 2 answers, and is hence contained in Cons (β ′ ∗v ), we show inductively that all positions
ncountered during the transition from αstart to αend are consistent with β ′ . As already noted, this
olds for the position α0 obtained from αstart by deleting all assignments of variables in U start \ U end .
or the induction step, let i ≥ 0 and assume inductively that the current position αi over 

U i : = (U start ∩ U end ) ∪ {u j | 1 ≤ j ≤ i} (5.3)

s consistent with β ′ . Now, Player 1 asks about the variable u i+1 and Player 2 answers with a
alue a i+1 . Since αi is consistent with β ′ , there is an assignment βext ⊇ β ′ that sets the variables v ∈
 ( Vars (αi )) to the right values such that αi ( u) = 

⊕ 

v ∈N (u ) βext ( v ) for all u ∈ Vars ( αi ). By our or-

ering of U 

′ = {u 1 , . . . , u t } chosen above, we know that u i+1 has at least one neighbor on the right-
and side V that is neither contained in N 

G (U i ) = N 

G ( Vars (αi )) nor in the domain of β ′ . Hence, re-
ardless of which value a i+1 Player 2 chooses for her answer, we can extend the assignment βext to
he variables N 

G ( u i+1 ) \ ( N 

G ( Vars ( αi )) ∪ Vars ( β ′ )) in such a way that 
⊕ 

v ∈N (u i+1 ) 
βext (v ) = a i+1 .

his shows that αi+1 defined over U i+1 = (U start ∩ U end ) ∪ {u j | 1 ≤ j ≤ i + 1 } is consistent with β ′ .
ubclaim 5.11 now follows by the induction principle. �

Before proving Subclaim 5.10 , we should perhaps point out why this claim is not vacuous. Re-
alling the discussion just below Lemma 5.3 , this is because the condition V 1 ⊆ V 2 does not allow
s to conclude that γ (V 1 ) ⊆ γ (V 2 ). 

Proof of Subclaim 5.10 . The proof is similar to that of Subclaim 5.11 above. Player 1 starts
ith an assignment αstart ∈ Cons (β ) and wants to reach some assignment in Cons (β ′ ) for β ′ ⊆ β
ithin k rounds. By assumption, αstart is consistent with β and therefore (since β ′ ⊆ β) is also con-

istent with β ′ . Player 1 deletes all assignments from the domain U start = Ker ( γ ( Vars ( β ) ) ) of αstart

hat do not occur in the domain U end = Ker ( γ ( Vars ( β ′ ) ) ) of positions in Cons (β ′ ), resulting in the
osition α0 ⊆ αstart that is consistent with β ′ . Next, he applies Lemma 5.2 to G 

′ = G \ γ ( Vars (β )) to
btain an ordering of the remaining variables U end \ U start . In the same way as above, he can query
he variables in this order while maintaining the invariant that the current position is consistent
ith β ′ . �

Combining Subclaims 5.9 , 5.10 , and 5.11 , we conclude that Player 1 wins from every position
∈ Cons (β ) within 2 ki rounds. This concludes the proof of Claim 5.8 . �

We are finally in a position to give a formal proof of Lemma 3.3 . 

Proof of Lemma 3.3 . Let Δ0 ∈ N 

+ be the constant in Lemma 5.4 . Suppose we are given an m-
ariable p-XOR formula F and parameters � lo , � hi , r , Δ satisfying the conditions in Lemma 3.3 that
 hi /� lo ≥ Δ ≥ Δ0 and (2 � hi Δ) 2 Δ ≤ m. 

Fix k : = � hi and s : = 2 � hi . Since (sΔ) 2 Δ ≤ m and Δ ≥ Δ0 , we appeal to Lemma 5.4 to obtain an m ×
� m 

3 /Δ� (s, Δ, 2 )-boundary expander G = (U 

. 
∪ V , E), and applying XORification with respect to G,

e construct the formula H : = F [ G] . Clearly, H is an (Δp)-XOR formula with � m 

3 /Δ� variables. We
ant to prove that Player 1 has a winning strategy for the (Δ� lo )-pebble game on H as guaranteed

y Lemma 3.3 ( a’ ), but that he does not win the � hi -pebble game on H within r/ (2 � hi ) rounds, as
tated in Lemma 3.3 ( b’ ). 

For the upper bound in Lemma 3.3 ( a’ ), we recall that Player 1 has a winning strategy in the � lo -
ebble game on F by assumption ( a ) in the lemma. He can use this strategy to win the (Δ� lo )-pebble
ame on H as follows: Whenever his strategy tells him to ask for a variable u ∈ U = Vars (F ), he
nstead asks for the at most Δ variables in N ( u) ⊆ V = Vars ( H ) and assigns to u the value that
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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orresponds to the parity of the answers Player 2 gives for N (u). In this way, he can simulate
is strategy on F until he reaches an assignment that contradicts an XOR constraint C from F . As
he corresponding assignment of the variables {v | v ∈ N (u), u ∈ Vars (C )} falsifies the constraint
[ G] ∈ H , at this point Player 1 wins the (Δ� lo )-pebble game on H . 
The lower bound in Lemma 3.3 ( b’ ) follows immediately from Lemma 5.6 . By assumption ( b ) in

emma 3.3 , Player 1 does not win the � hi -pebble game on F within r rounds. Since G is an m × n
 2 k , 2 )-boundary expander, Lemma 5.6 says that he does not win the � hi -pebble game on H = F [ G]
ithin r/ (2 � hi ) rounds either. This concludes the proof of Lemma 3.3 . �

 CONCLUDING REMARKS 

n this article, we prove an n 

Ω(k / log k ) lower bound on the minimal quantifier depth of L 

k and C 

k 

entences that distinguish two finite n-element relational structures, nearly matching the trivial
 

k−1 upper bound. By the known connection to the k-dimensional Weisfeiler–Leman algorithm,

his result implies near-optimal n 

Ω(k / log k ) lower bounds also on the number of refinement steps of
his algorithm. The key technical ingredient in our proof is the hardness condensation technique
ecently introduced by Razborov [ 43 ] in the context of proof complexity, which we translate into
he language of finite variable logics and use to reduce the domain size of relational structures
hile maintaining the minimal quantifier depth required to distinguish them. 
An obvious open problem is to improve our lower bound. One way to achieve this would be to

trengthen the lower bound on the number of rounds in the k-pebble game on 3-XOR formulas in
emma 3.2 from n 

1 / log k to n 

δ for some δ � 1 / log k . By the hardness condensation lemma, this

ould directly improve our lower bound from n 

Ω(k / log k ) to n 

Ω(δk ) . 
The structures on which our lower bounds hold are n-element relational structures of arity Θ(k )

nd size n 

Θ(k ) . We would have liked to have this results also for structures of bounded arity, such
s graphs. However, the increase of the arity is inherent in the method of amplifying hardness by

aking XOR substitutions. An optimal lower bound of n 

Ω(k ) on the quantifier depth required to
istinguish two n-vertex graphs has been obtained by the first author in an earlier work [ 12 ] for
he existential-positive fragment of L 

k . Determining the quantifier rank of full L 

k and C 

k on n-vertex
raphs remains an open problem. 
Another open question related to our results concerns the complexity of finite variable equiv-

lence for non-constant k . What is the complexity of deciding, given two structures and a pa-
ameter k , whether the structures are equivalent in L 

k or C 

k ? As this problem can be solved in

ime (‖ A‖ + ‖ B‖ ) O (k ) , it is in EXPTIME if k is part of the input. It has been conjectured that this
roblem is EXPTIME -complete [ 21 ], but it is not even known whether it is NP -hard. Note that
he quantifier depth is connected to the computational complexity of the equivalence problem by

he fact that an upper bound of the form n 

O (1 ) on n-element structures would have implied that
esting equivalence is in PSPACE . Hence, our lower bounds on the quantifier depth can be seen as
 necessary requirement for establishing EXPTIME -hardness of the equivalence problem. 

PPENDIX 

 EXISTENCE AND PROPERTIES OF EXPANDER GRAPHS 

n this appendix, we present proofs of Lemmas 5.3 and 5.4 , starting with the latter lemma. We
gain remark that most of this material can already be found in a similar form in Reference [ 43 ],
lthough the exact parameters are somewhat different. It also seems appropriate to point out that
here is a significant overlap with essentially identical technical lemmas in Reference [ 13 ]. 

Just to avoid ambiguity, let us state explicitly that even though we have the Euler number e
ppearing below, all logarithms are being taken to base 2 (though this should not really matter too
uch). 
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Lemma 5.4 (Restated). There is an absolute constant Δ0 ∈ N 

+ such that for all integers Δ, s , m
atisfying Δ ≥ Δ0 and (sΔ) 2 Δ ≤ m there exist m × � m 

3 /Δ� (s, Δ, 2 )-boundary expanders. 

Proof. Let U and V be two disjoint sets of vertices of size |U | = m and |V | = n = � m 

3 /Δ�. For
very u ∈ U , we choose Δ times a neighbor v ∈ V uniformly at random with repetitions. This

ields a bipartite graph G = (U 

. 
∪ V , E) of left-degree at most Δ. In the sequel, we show that G is

ikely to be an (s, Δ, 2 )-boundary expander. 
First note that for every set U 

′ ⊆ U all neighbors v ∈ N ( U 

′ ) \ ∂( U 

′ ) that are not in the boundary
f U 

′ have at least two neighbors in U 

′ . Since there are at most Δ| U 

′ | − | ∂(U 

′ ) | edges between U 

′

nd N ( U 

′ ) \ ∂( U 

′ ), it follows that |N ( U 

′ ) \ ∂( U 

′ ) | ≤ ( Δ| U 

′ | − | ∂(U 

′ ) | )/ 2 and hence 

| N (U 

′ ) | ≤ | ∂(U 

′ ) | + Δ| U 

′ | 
2 

. (A.1)

f G is not an (s, Δ, 2 )-boundary expander, then there is a set U 

′ of size |U 

′ | = � ≤ s that has a
oundary ∂(U 

′ ) of size |∂(U 

′ ) | < 2 � and from Inequality ( A.1 ) it then follows that |N ( U 

′ ) | < ( 1 +
/ 2 )�. By a union bound argument (and relaxing to non-strict inequalities), we obtain 

Pr [ G is not an (s, Δ, 2 )~-boundary expander ] (A.2a)

≤
s ∑ 

�= 1 

∑ 

U 

′ ⊆U ; |U 

′ |= � 
Pr 

[ 
|∂(U 

′ ) | ≤ 2 � 
] 

(A.2b)

≤
s ∑ 

�= 1 

∑ 

U 

′ ⊆U ; |U 

′ |= � 
Pr 

[ 
|N ( U 

′ ) | ≤ ( 1 + Δ/ 2 )� 
] 

(A.2c)

≤
s ∑ 

�= 1 

( 
m 

� 

) ( 
n 

(1 + Δ/ 2 )� 

) ( 
(1 + Δ/ 2 )� 

n 

) Δ� 
(A.2d)

≤
s ∑ 

�= 1 

m 

� 

( 
en 

(1 + Δ/ 2 )� 

) (1 +Δ/2 )� ( 
(1 + Δ/ 2 )� 

n 

) Δ� 
(A.2e)

= 

s ∑ 

�= 1 

m 

� ( en) (1 +Δ/2 )� ( ( 1 + Δ/ 2 )� ) (Δ/2 −1 )� n 

−Δ� (A.2f)

≤
s ∑ 

�= 1 

n 

(Δ/3 )� ( en) (1 +Δ/2 )� ( ( 1 + Δ/ 2 )� ) (Δ/2 −1 )� n 

−Δ� (A.2g)

= 

s ∑ 

�= 1 

n 

(Δ/3 )� n 

log e 
log n (1 +Δ/2 )� n 

1 
log n log 

(
( Δ/2 +1 )� 

)
( Δ/2 −1 )� 

n 

(−Δ/2 +1 )� (A.2h)

≤
s ∑ 

�= 1 

n 

(
log e 
log n Δ+

1 
log n log ( Δs )( Δ/ 2 −1 )−Δ/ 6 +1 

)
� 
, (A.2i)

here in going from Term ( A.2d ) to Term ( A.2e ), we use the inequality 

(
n 
k 

)
≤ ( en 

k 
) k for e ≈ 2 . 718

enoting the Euler number, and in going from Term ( A.2h ) to Term ( A.2i ), we assume that Δ ≥ 2
nd also use that � ≤ s . 

To show that the expression ( A.2i ) is bounded away from 1—which implies that G is an (s, Δ, 2 )-
oundary expander with constant probability— it suffices to study the exponent and prove that
here is a constant ε > 0 such that 

log e 

log n 

Δ +
1 

log n 

log (Δs ) 
(Δ

2 
− 1 

)
− Δ

6 
+ 1 ≤ −ε < 0 , (A.3)
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hich holds if there is an ε ′ = ε/ Δ such that 

log e 

log n 

+
1 

log n 

log (Δs ) 
(

1 

2 
− 1 

Δ

)
− 1 

6 
+

1 

Δ
≤ −ε ′ < 0 . (A.4)

ince (sΔ) 2 Δ ≤ m ≤ n 

Δ/3 , we have sΔ ≤ n 

1 /6 , and it follows that 

log e 

log n 

+
log ( Δs ) ( 1 / 2 − 1 / Δ) 

log n 

− 1 

6 
+

1 

Δ
(A.5a)

≤ log e 

log n 

+
log 

(
n 

1 /6 
)

2 log n 

− 1 

6 
+

1 

Δ
(A.5b)

= 
log e 

log n 

− 1 

12 
+

1 

Δ
(A.5c)

≤ −ε ′ < 0 , (A.5d)

here we can make the last inequality hold for ε ′ small enough and n and Δ large enough. For-
ally, assuming ( ∗) Δ ≥ 13 , we fix constants 0 < ε ′ < 1 / 12 and n 0 such that the inequality between

erm ( A.5c ) and Term ( A.5d ) holds for any n satisfying ( ∗∗) n ≥ n 0 . Then, we obtain that

erm ( A.2i ) is bounded by 

∑ s 
�= 1 n 

−ε ′ Δ� . Insisting in addition that ( ∗∗∗) n ≥ 3 1 /ε ′ , we can upper-
ound Term ( A.2i ) by 

s ∑ 

�= 1 

n 

−ε ′ Δ� ≤
∞ ∑ 

�= 1 

(
1 
3 

)� 
≤ 1 

2 . (A.6)

t remains to calculate how to set Δ0 to make sure that conditions ( ∗), ( ∗∗), and ( ∗∗∗) hold. Note
hat, by assumption, we have (sΔ) 2 Δ ≤ m, which implies that ΔΔ ≤ m. It follows that we will always

ave n = � m 

3 /Δ� ≥ (ΔΔ) 3 /Δ = Δ3 ≥ (Δ0 ) 
3 . Hence, to guarantee Δ ≥ 13 , n ≥ n 0 , and n ≥ 3 1 /ε ′ , it is

ufficient to choose Δ0 ≥ max (13 , n 

1 /3 
0 , 3 

1 /(3 ε ′ ) ). This concludes the proof of the lemma. �

We next prove that in a good enough boundary expander, it holds that for any small enough right
ertex set V 

′ there is a superset γ (V 

′ ) ⊇ V 

′ with a small kernel such that the induced subgraph
 \ γ (V 

′ ) (obtained from G by deleting V 

′ and then all isolated vertices from U ) is also a good
oundary expander. Recall that we refer to such a set γ (V 

′ ) as a closure of V 

′ . 

Lemma 5.3 (Restated). Let G be an (s, 2 )-boundary expander. Then for every V 

′ ⊆ V with |V 

′ | ≤
/ 2 there exists a subset γ (V 

′ ) ⊆ V with γ (V 

′ ) ⊇ V 

′ such that | Ker (γ (V 

′ ) ) | ≤ |V 

′ | and the induced

ubgraph G \ γ (V 

′ ) is an ( s/ 2 , 1 )-boundary expander. 

Proof. Let G = (U 

. 
∪ V , E) be an (s, 2 )-boundary expander and let V 

′ ⊆ V have size |V 

′ | ≤ s/ 2 .
e construct an increasing sequence V 

′ = V 0 ⊂ V 1 ⊂ · · · ⊂ V τ = γ (V 

′ ) such that G \ V τ is an
 s/ 2 , 1 )-boundary expander as follows: 

If G \ V 0 is not an ( s/ 2 , 1 )-boundary expander, then there exists a set U 1 of size |U 1 | ≤ s/ 2 such
hat | ∂ G\ V 0 (U 1 ) | ≤ | U 1 | . Delete N (U 1 ) and Ker ( N ( U 1 )) from G \ V 0 . If the resulting graph is not an
 s/ 2 , 1 )-boundary expander, then we repeat this process and iteratively delete vertex sets that do
ot satisfy the expansion condition. Formally, for i ≥ 1 fix U i to be any set of size |U i | ≤ s/ 2 such
hat 			∂ G\ V i−1 (U i ) 

			 ≤ |U i |, (A.7)

here we set 

V i : = V 0 ∪ 

i ⋃ 

j= 1 

N 

G (U j ) (A.8)
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and where we note that at the ith step, we delete what remains of N 

G (U i ) and the ker-
el Ker ( N 

G ( U i )) of this right vertex set). Since all sets U i constructed above are non-empty, this
rocess must terminate for some i = τ and the resulting graph G \ V τ is then an ( s/ 2 , 1 )-boundary
xpander (note that an empty graph without vertices vacuously satisfies the expansion condition).
t remains to verify that the size condition | Ker (V τ ) | ≤ |V 0 | for the kernel of the closure of V 

′ holds.
his is immediately implied by the following inductive claim: 

Claim A.1. Let V −1 = U 0 = ∅ and suppose that i ≥ 0 . Then for U i satisfying Inequality ( A.7 ) and

 i defined by Inequality ( A.8 ) the following properties hold: 

(1) For all U 

′ such that Ker (V i−1 ) ∪ U i ⊆ U 

′ ⊆ Ker (V i ), we have |∂ G ( U 

′ ) \ V 0 | ≤ | Ker ( V i ) |. 
(2) The kernel of V i has size | Ker (V i ) | ≤ | V 0 | . 

For i = 0 , Property 1 in Claim A.1 follows, because U 

′ ⊆ Ker (V 0 ) implies that ∂ G (U 

′ ) ⊆ V 0 . For
roperty 2 , suppose that | Ker (V 0 ) | ≤ s . Then expansion implies 2 | Ker ( V 0 ) | ≤ |∂ G ( Ker ( V 0 ) ) |, and
ombining this with ∂ G ( Ker (V 0 )) ⊆ V 0 , we obtain | Ker (V 0 ) | ≤ 1 

2 |V 0 |. If instead | Ker (V 0 ) | > s , then

e can find a subset U 

′ ⊆ Ker (V 0 ) of size |U 

′ | = s . By expansion, we have |∂ G (U 

′ ) | ≥ 2 s , which is
 contradiction, because, as argued above, we should have | ∂ G (U 

′ ) | ≤ | V 0 | ≤ s/ 2 . 
For the induction step, suppose that both properties hold for i − 1 . Let U 

∗ = Ker (V i−1 ) ∪ U i and
onsider any U 

′ satisfying U 

∗ ⊆ U 

′ ⊆ Ker (V i ). We claim that every boundary element in ∂ G (U 

′ )
s either a boundary element from ∂ G (U 

∗) or is contained in V 0 . To see this, note that, since U 

′ ⊆
er (V i ), we have ∂ G (U 

′ ) ⊆ V i = V 0 ∪ 

⋃ i 
j= 1 N 

G (U j ). Furthermore, it can be observed that 
⋃ i 

j= 1 U j ⊆
 

∗ ⊆ U 

′ (this is basically due to the fact that N ( Ker (V 

′ )) ⊆ V 

′ for any V 

′ ). Hence, if v ∈ ∂ G (U 

′ ) \
 0 , then it must hold that v ∈ ⋃ i 

j= 1 N 

G (U j ), and so the unique neighbor of v on the left is contained

n 

⋃ i 
j= 1 U j and therefore also in U 

∗, implying that v ∈ ∂(U 

∗). This yields that 

∂ G (U 

′ ) \ V 0 ⊆ ∂ G (U 

∗) \ V 0 , (A.9)

s claimed, and in what follows, we will show 			∂ G (U 

∗) \ V 0 
			 = 			∂ G ( Ker (V i−1 ) ∪ U i ) \ V 0 

			 ≤ | Ker (V i ) | (A.10)

o prove Property 1 . 
Note that by construction every vertex in V i−1 \ V 0 has at least one neighbor in Ker (V i−1 ). It

ollows that all new boundary vertices in ∂ G ( Ker (V i−1 ) ∪ U i ) \ ∂ G ( Ker (V i−1 ) ) are either from V 0

r from the boundary ∂ G\ V i−1 (U i ) of U i outside of V i−1 . Therefore, we have 

∂ G (U 

∗) \ V 0 = ∂ 
G 
(
Ker (V i−1 ) ∪ U i 

)
\ V 0 ⊆

(
∂ G ( Ker (V i−1 )) \ V 0 

) . 
∪ ∂ G\ V i−1 (U i ). (A.11)

ince, by assumption, U i does not satisfy the expansion condition, we know that 			∂ G\ V i−1 (U i ) 
			 ≤ |U i | (A.12)

nd by the inductive hypothesis concerning Property 1 with U 

′ = Ker (V i−1 ), we have 			∂ G ( Ker ( V i−1 )) \ V 0 
			 ≤ | Ker ( V i−1 ) |. (A.13)

ombining Expression ( A.9 ) with Expression ( A.11 ) and ( A.13 ), we deduce that 			∂ G (U 

′ ) \ V 0 
			 ≤ 			∂ G ( Ker (V i−1 ) ∪ U i ) \ V 0 

			 ≤ | Ker (V i−1 ) | + |U i | ≤ | Ker (V i ) |, (A.14)

here the final inequality holds, since Ker (V i−1 ) and U i are disjoint subsets of Ker (V i ). This con-
ludes the inductive step for Property 1 . 

To establish Property 2 , assume first that | Ker (V i ) | ≤ s . Then by expansion and Property 1 ap-
lied to U 

′ = Ker (V i ), we have 

2 | Ker ( V i ) | ≤ 			∂ G ( Ker ( V i ) ) 
			 ≤ |V 0 | + | Ker (V i ) | (A.15)
Journal of the ACM, Vol. 70, No. 5, Article 32. Publication date: October 2023. 
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nd hence 

| Ker (V i ) | ≤ | V 0 | , (A.16)

s desired. If instead | Ker (V i ) | > s , then by the inductive hypothesis, we know that | Ker (V i−1 ) | ≤
/ 2 and by construction, we have |U i | ≤ s/ 2 . Therefore, we can find a set U 

′ of size |U 

′ | = s sat-
sfying the condition Ker (V i−1 ) ∪ U i ⊆ U 

′ ⊆ Ker (V i ) in Property 1 . From the expansion proper-
ies of G, we conclude that |∂(U 

′ ) | ≥ 2 s . But this is a contradiction, because for sets U 

′ satis-
ying the conditions in Property 1 , we derived Inequality ( A.14 ), which implies that |∂(U 

′ ) | ≤
V 0 | + | Ker (V i−1 ) | + | U i | ≤ 2 · | V 0 | + | U i | ≤ 3 s/ 2 . �
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