1

KOBENHAVNS
UNIVERSITET .

Computability and Complexity: Problem Set 1

Due: Thursday February 29 at 23:59 AokE.

Submission: Please submit your solutions via Absalon as a PDF file. State your name and
e-mail address at the top of the first page. Solutions should be written in ITEX or some
other math-aware typesetting system with reasonable margins on all sides (at least 2.5 cm).
Please try to be precise and to the point in your solutions and refrain from vague statements.
Never just state an an answer, but make sure to also explain your reasoning. Write so that a
fellow student of yours can read, understand, and verify your solutions. In addition to what
is said below, the general rules for problem sets stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two to three people are allowed—and
indeed, encouraged—but you should always write up your solutions completely on your own,
from start to finish, and you should understand all aspects of them fully. It is not allowed
to compose draft solutions together and then continue editing individually, or to share any
text, formulas, or pseudocode. Also, no such material may be downloaded from or generated
via the internet to be used in draft or final solutions. Submitted solutions will be checked
for plagiarism. You should also clearly acknowledge any collaboration. State close to the top
of the first page of your problem set solutions if you have been collaborating with someone
and if so with whom. Note that collaboration is on a per problem set basis, so you should
not discuss different problems on the same problem set with different people.

Reference material: Some of the problems are “classic” and hence it might be possible to
find solutions on the internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes, or any material found in Arora-Barak, should be fair game, though,
unless you are specifically asked to show something that we claimed without proof in class.
All definitions should be as given in class or in Arora-Barak and cannot be substituted by
versions from other sources. It is hard to pin down 100% watertight, formal rules on what
all of this means—when in doubt, ask the main instructor.

Grading: A total score of 80 points will be enough for grade 02, 110 points for grade 4,
140 points for grade 7, 170 points for grade 10, and 200 points for grade 12 on this problem
set. Any revised versions of the problem set with clarifications and/or corrections will be
posted on the course webpage jakobnordstrom.se/teaching/CoCo24/|

Questions: Please do not hesitate to ask the instructors or TA if any problem statement
is unclear, but please make sure to send private messages when using Absalon—sometimes
specific enough questions could give away the solution to your fellow students, and we want
all of you to benefit from working on, and learning from, the problems. Good luck!

(10 p) The Arora-Barak textbook defines NP to be the set of languages L with the following
property: There is a polynomial-time (deterministic) Turing machine M and a polynomial p such
that « € L holds if and only if there is a witness y of length ezactly p(|z|) for which M (x,y) = 1.
An attentive listener will have noticed that in the lectures we were in fact a bit more relaxed,
and stipulated that the witness y should be of length at most p(|x|), but might be shorter for
some .

Show that these two different definitions of NP are equivalent. That is, prove formally that
the two definitions yield exactly the same set of languages in NP. (This is not hard, but please
be careful so that you do not run into problems with any annoying details.)

Page 1 (of 6)

NDAAQ9007U Computability and Complexity e 2023/2024
Jakob Nordstrém, Srikanth Srinivasan, and Amir Yehudayoff

2

(20 p) Let L be the language
L ={n € N | n = pq for distinct prime numbers p and ¢} .
Prove that L is in NP and also in coNP.

(20 p) Let ONENEGSAT be the language of satisfiable CNF formulas in which each clause has
at most one negated literal. Prove that ONENEGSAT is in P.

(40 p) In this course we mostly focus on decision problems, although in real life one would be
interested in solving search problems yielding actual solutions. We argued in class that the
restriction to decision problems is essentially without loss of generality, since efficient algorithms
for decision problems can usually be used to solve also search problems efficiently. In this problem
we wish to investigate two concrete examples of this.

4a (20 p) Jakob had actually prepared pseudocode for an algorithm SEARCH-PATH(G, s, t),
showing how the search version of (s, ?)-PATH, where the task is to find a path from s to ¢
in GG if there is one, can be solved by using an algorithm DECIDE-PATH(G, s t) for the
decision version of the problem. In the end he did not have time to present this in class,
but the algorithm he had in mind was as follows (where path is an ordered set, nbqueue is
a queue of vertices, and N(v) denotes the out-neighbours of a vertex v):

SEARCH-PATH(G, s, t)
Currv := s
path {3
stuck := FALSE
while (currv !'= t and not(stuck))
stuck := TRUE
nbqueue := {}
for v in N(currv) // make queue of neighbours
if (not(v in path)) // not already in path
enqueue (nbqueue, v)
while (not(empty(nbqueue)) and stuck) // try to extend path with
nextv := dequeue(nbqueue) // some such neighbour
if (DECIDE-PATH(G, nextv, t))
stuck := FALSE

currv := nextv
append(path, nextv) // add new vertex to path
if (stuck)
return {}
else

return path

Can you help Jakob by filling in the analysis of why this algorithm is correct, i.e., showing
that it will return a path from s to ¢ if there is one and otherwise the empty set? (Or, in
case you think there are issues with the algorithm, can you point them out as clearly and
convincingly as possible?)

Page 2 (of 6)

NDAAQ9007U Computability and Complexity e 2023/2024
Jakob Nordstrém, Srikanth Srinivasan, and Amir Yehudayoff

5

4b

(20 p) Another problem discussed in class was FACTORING, i.e., given an integer N, the
task of returning the prime factors of N sorted in increasing order (with repetitions if a
prime factor occurs to a high power, say). Note that for number-theoretic algorithms like
this we measure efficiency in the size of the representation of the number N, which is
[log(N + 1)] bits, and an efficient algorithm should thus scale polynomially in log N.

To make this into a decision problem FACTOR, let us say that (N, k) € FACTOR if N has
a factor f such that 1 < f < k. Show that if we have an algorithm for deciding FACTOR
in time polynomial in log N, then we can use this to build an algorithm for the search
problem FACTORING that also runs in time polynomial in log N.

(20 p) In our proof of the Cook-Levin Theorem, we used the fact that any Boolean function
f:{0,1}" — {0,1} can be represented as a CNF formula of size at most n - 2™

5a

5b

(10 p) Use the construction in our proof (or proof sketch) of this lemma to write down a
CNF representation of

0 if all inputs x1, x2, and x3 are equal,

1 otherwise.

NEQ(x1, x2,23) = {

(10 p) Do the same for

MAJ(xy, 29, 23) = 1 at least two Tﬂpu s are 0,
1 if at least two inputs are 1.

Can you find a smaller CNF formula for MAJ than the one that the construction in the
proof gives you?

(40 p) For a CNF formula F, let F denote the “canonical 3-CNF version” of F' constructed as
follows:

6a

6b

e Every clause C € F with at most 3 literals appears also in F.

e For every clause C' € F with more than 3 literals, say, C = a1 Vags V-V ag, we add to F

the set of clauses
o, BoVarVyr, 11VazVyz, oo, Gy Vag Ve, Uit
where g, ..., y, are new variables that appear only in this subset of clauses in F.
(10 p) Prove that F is unsatisfiable if and only if F is unsatisfiable. (Please make sure

to prove this claim in both directions, and to be careful with what you are assuming and
what you are proving.)

(10 p) A CNF formula F' is said to be minimally unsatisfiable if F' is unsatisfiable but any
formula F' = F'\ {g} obtained by removing an arbitrary clause C from £ is always satis-
fiable. Prove that F' is minimally unsatisfiable if and only if F' is minimally unsatisfiable.

Page 3 (of 6)

NDAAQ9007U Computability and Complexity e 2023/2024
Jakob Nordstrém, Srikanth Srinivasan, and Amir Yehudayoff

6¢c

(20 p) Consider the language
MINUNSAT = {F |F is a minimally unsatisfiable CNF formula} .

What can you say about the computational complexity of deciding this language?

For this subproblem, and for this subproblem only, please look at textbooks,
search in the research literature, or roam the internet to find an answer. As
your solution to this subproblem, provide a brief but detailed discussion of your findings
regarding MINUNSAT together with solid references where one can look up any definitions
and /or proofs (i.e., not a webpage but rather a research paper or possibly textbook). Note
that you should still follow the problem set rules in that you are not allowed to collaborate
or interact with anyone other than your partner(s) on this problem set.

(50 p) Given a (multi)set A = {a;,as,...,a,} of integer terms and a target sum 7', does there
exist a subset S C [m] such that }7,_ga; = T7 We have learned in class that this problem,
known as SUBSETSUM, is NP-complete. In this problem, we want to look more closely at the
reduction establishing NP-hardness and study what happens when we tinker with this reduction.

Ta

(15 p) Recall the reduction we saw from 3-SAT to SUBSETSUM constructed as follows: We
are given a 3-CNF formula I with m clauses C, ...,), over n variables x1,...,2,. We
build from this /' a SUBSETSUM instance with 2(n + m) integer terms and target sum as
follows, where all numbers below have n + m decimal digits each:

e For each variable x;, construct numbers A7 and AL such that:
— the ith digit of AlT and A;;F is equal to 1;
— for n+1 < j < n+m, the jth digit of AT is equal to 1 if the clause C;_,, contains
the literal x;;
— forn+1< 7 <n+m, the jth digit of Af is equal to 1 if C;_,, contains 7;, and
— all other digits of A7 and A" are 0.
e For each clause Cj} , construct numbers B} and BJ2 such that
— the (n + j)th digit of B} is equal to 1;
— the (n + j)th digit of BJ2 is equal to 2; and
— all other digits of B} and BJ2~ are 0.
e The target sum T has
— gjth digit equal to 1 for 1 < j < n and
— jth digit equal to 4 forn +1 < j < n+ m.

Since we discussed this only briefly in class, write down a detailed proof establishing that
the above is a correct reduction from 3-SAT to SUBSETSUM that proves the NP-hardness
of the latter problem. That is, argue that the reduction (i) is polynomial-time computable,
(ii) maps yes-instances to yes-instances, and (iii) maps no-instances to no-instances.

Page 4 (of 6)

NDAAQ9007U Computability and Complexity e 2023/2024
Jakob Nordstrém, Srikanth Srinivasan, and Amir Yehudayoff

Tb (15 p) Given a 3-CNF formula F' with m clauses over n variables, run the same reduction
as in problem except that the numbers B} and sz are omitted and the target sum T'
has all digits equal to 1. Formulas that map into satisfiable instances of SUBSETSUM under
this modified reduction have a very specific form of satisfying assignments. Describe what
such assignments look like.

Tc (20 p) Consider the language HACKEDSAT consisting of 3-CNF formulas that map to satisi-
fiable SUBSETSUM instances under the reduction in problem [7Tb} What is the complexity
of deciding this language? Is it in NP7 In P? Or NP-complete? For full credit, provide
either a polynomial-time algorithm or a reduction from some problem proven NP-complete
in chapter 2 in Arora-Barak or during the lectures.

(50 p) Recall that as discussed in class, we can agree on some fixed, standardized encoding of
Turing machines in the binary alphabet {0,1}. This allows us to view each Turing machine as
an integer, namely the number whose binary expansion is the encoding of the Turing machine
in question. We can also also agree that integers that do not correspond to Turing machines
under this translation are interpreted as the Turing machine that immediate halts regardless of
input. Given this convention, any number x encodes a Turing machine M,, and we can define a
function g : N - N by

(z) = s if M, takes s < oo steps before halting given the empty string as input;
g 0 if M, does not halt given the empty string as input.

Note that given that we have fixed the encoding of Turing machines into binary strings, this is
certainly a well-defined mathematical function that maps any non-negative integer x into some
non-negative integer y = g(x).

Even though the function g(z) exists, computing it is another matter. In this problem, we
want to show that g(x) is not computable in a very strong sense. Namely, your task is to
prove that g(z) grows faster than any computable function. That is, show that there cannot
exist any monotonically increasing function k : N — N and any Turing machine M”" such that
g(x) = O(h(x)) and M" computes h(x) when given x as input.

Page 5 (of 6)

NDAAQ9007U Computability and Complexity e 2023/2024
Jakob Nordstrém, Srikanth Srinivasan, and Amir Yehudayoff

9

(60 p) Your task in this problem is to produce a complete, self-contained proof of (the vanilla
version of) Ladner’s theorem that was discussed briefly during one of the lectures. The goal is
(at least) twofold:

e To have you work out the proof in detail and make sure you understand it.
e To train your skills in mathematical writing.

When you write the proof, you can freely consult the lecture notes as well as the relevant material
in Arora-Barak, but you need to fill in all missing details. Also, the resulting write-up should
stand on its own without referring to the lecture notes, Arora-Barak, or any other source.

Your write-up should be accessible to a student who has studied and fully understood the
material during the first two weeks of lectures of this course but does not necessarily know more
than that. (However, you do not need to explain again the material in our first lectures, but can
assume that they have been fully digested.)

You are free to structure your proof as you like, except that all of the ingredients listed below
should be explicitly addressed somewhere in your proof. (You can take care of them in whatever
order you find appropriate, however. Please do not refer to the labelled subproblems in your
write-up, since it should be a stand-alone text, but make sure that it is easy to find where in
your solution the different items are dealt with.)

9a Define

P(n)

SATp = {'g,/)()l” ’ 1) € CNFSAT and n = |l,b|}

as the language of satisfiable CNF formulas padded by a suitable number of ones at the
end as determined by the function P, which we assume to be polynomial-time computable.

9b Prove that if P(n) = O(1), then SATp is NP-complete.
9c Prove that if P(n) = Q(n/logn), then SATp € P.

9d Give a complete description of the algorithm computing H(n) (as in the lecture notes) and
prove that H is well-defined in that the algorithm terminates and computes some specific
function.

9e Prove that not only does the algorithm terminate, but it can be made to run in time
polynomial in n. (Note that there are a number of issues needing clarification here, such
as, for instance, how to solve instances of CNFSAT efficiently enough.)

9f Prove that SATy € P if and only if H(n) = O(1).
9g Prove that if SATy ¢ P, then H(n) — oo as n — 0.

9h Assuming that P £ NP, prove that SATy does not lie in P but also cannot be NP-complete.

Page 6 (of 6)

NDAAQ9007U Computability and Complexity e 2023/2024
Jakob Nordstrém, Srikanth Srinivasan, and Amir Yehudayoff

